期刊文献+

一种多尺度灰度共生矩阵的纹理特征提取算法 被引量:15

Multi-scale algorithm of texture feature extraction based on gray-level co-occurrence matrix
下载PDF
导出
摘要 纹理特征作为图像的一个重要特征,在国画分类识别中的地位十分重要,但现有的纹理提取算法大多基于灰度信息而忽略了颜色信息。针对国画分类识别中纹理提取算法存在的问题,本文提出了一种多尺度、多色域的纹理特征提取算法,该算法结合了轮廓波变换和灰度共生矩阵的优点。为了对国画进行特征提取,该算法首先将国画图像转变到HSI色彩空间。然后,提取色调、饱和度、强度这三个色彩分量进行分区域操作,即提取每一个色彩分量的纹理特征。最后,将提取的3个特征向量融合并进行主成分分析降维。实验证明,与灰度共生矩阵相比,本文算法在国画分类识别方面查准率提高了7.5%,查全率提高了8.7%。实验表明多尺度灰度共生矩阵算法优于传统的灰度共生矩阵算法。 As an important feature,texture feature is very important in the category of Chinese painting,but the majority of the existing texture extraction algorithms is based on gray-scale information.To solve the problems in Chinese painting texture extraction classification,a multi-scale,multi-color domain texture feature extraction algorithm has been proposed.This algorithm combines the advantages of Contourlet transform and Gray-level Co-occurrence Matrix.In order to extract Chinese painting features by the new algorithm,the image is first transformed into HSI color space.Then,the three color components of HSI is extracted to sub-regional operation,which is to extract the texture characteristics of each color component.Finally,three feature vectors are integrated and the dimensionality of matrix is reduced using Principal Component Analysis.Experimental results show thatcompared with Gray-level Co-occurrence Matrix,the algorithm improves the precision of 7.5%,recheck rate increased by 8.7% in terms of Chinese painting classification.The experiment show that the new algorithm presented in this paper is better than Gray-level Co-occurrence Matrix algorithm.
作者 王民 王静 王羽笙 WANG Min WANG Jing WANG Yu-sheng(School of Information and Control Engineering ,Xi'an University of Architecture and Technology .Xi'an 710055? China)
出处 《液晶与显示》 CAS CSCD 北大核心 2016年第10期967-972,共6页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金(No.61373112) 住房和城乡建设部科学技术项目计划(No.2016-R2-045) 陕西省自然科学基础研究资金(No.2014JM8343)
关键词 多尺度分析 轮廓波变换 灰度共生矩阵 国画 multi-scale analysis contourlet transform gray-level co-occurrence matrix Chinese painting
  • 相关文献

参考文献10

二级参考文献83

共引文献228

同被引文献124

引证文献15

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部