摘要
系统开启后服务台以高速率为顾客服务,直到系统中无顾客等待服务。服务台进入闲置期,如果仍无顾客进来,进入低速率服务期。在此期间等待服务的顾客数大于或等于N时,进入高速率服务期。利用随机模型的矩阵几何解方法,得到了极限状态下条件顾客数和条件等待时间的分布,以及顾客数和等待时间的随机分解。
When the system is turned on, the service desk services at a high rate, until there is no customer. Reception into the idle period, if there is still no customers, the system comes into the low rate of service. When the number of customers waiting for service during this period is greater than or equal to N, into the high rate of service. Using the random model matrix geometric solution obtains the distribution of the number of customers under extreme conditions and conditions state waiting time, and stochastic decomposition of customer number and waiting time.
作者
师海燕
魏淳
卢永红
SHI Hai-yan WEI Chun LU Yong-hong(School of Mathematics and Computer Science, Shanxi Datong University, 037009 School of Physics and Electronic Science, Shanxi Datong University, 037009)
出处
《山西大同大学学报(自然科学版)》
2016年第4期6-8,共3页
Journal of Shanxi Datong University(Natural Science Edition)
基金
国家自然科学基金项目[11301312]
关键词
服务速率
M/M/1
矩阵几何解
随机分解
service rate
M/M/1
matrix-geometric solution
stochastic decomposition