摘要
Rock slope stability is of great concern along highway routes as stability problems on cut slopes may cause fatal events as well as loss of property.In rock slope engineering,stability evaluations are commonly performed by means of analytical or numerical analyses,principally considering the factor of safety concept.As a matter of fact,the probabilistic assessment of slope stability is progressively getting popularity due to difficulties in assigning the most appropriate values to design parameters in analytical or numerical methods.Additionally,the effect of heterogeneities in rock masses and discontinuities on the analysis results is minimized through the probabilistic concept.In this study,slope stability of high and steep sedimentary rock cut slopes along a state highway in AdilcevazBitlis(Turkey) was evaluated on the basis of probabilistic approach using the Slope Stability Probability Classification(SSPC) system.The probabilistic assessment indicates major slope stability problems because of discontinuity controlled and discontinuity orientation independent mass movements.Almost all studied cut slopes suffer from orientation-independent stability problems with very low stability probabilities.Additionally,the probability of planar and toppling failures issignificantly high with respect to the SSPC system.The stability problems along the investigated rock slopes were also verified by field reconnaissance.Remedial measures such as slope re-design and reinforcement at the studied locations should be taken to prevent hazardous events along the highway.On the other hand,the probabilistic approach may be a useful tool during rock slope engineering to overcome numerous uncertainties when probabilistic and analytic results are compared.
Rock slope stability is of great concern along highway routes as stability problems on cut slopes may cause fatal events as well as loss of property. In rock slope engineering, stability evaluations are commonly performed by means of analytical or numerical analyses, principally considering the factor of safety concept. As a matter of fact, the probabilistic assessment of slope stability is progressively getting popularity due to difficulties in assigning the most appropriate values to design parameters in analytical or numerical methods. Additionally, the effect of heterogeneities in rock masses and discontinuities on the analysis results is minimized through the probabilistic concept. In this study, slope stability of high and steep sedimentary rock cut slopes along a state highway in Adilcevaz-Bitlis (Turkey) was evaluated on the basis of probabilistic approach using the Slope Stability Probability Classification (SSPC) system. The probabilistic assessment indicates major slope stability problems because of discontinuity controlled and discontinuity orientation independent mass movements. Almost all studied cut slopes suffer from orientation-independent stability problems with very low stability probabilities. Additionally, the probability of planar and toppling failures is significantly high with respect to the SSPC system. The stability problems along the investigated rock slopes were also verified by field reconnaissance. Remedial measures such as slope re-design and reinforcement at the studied locations should be taken to prevent hazardous events along the highway. On the other hand, the probabilistic approach may be a useful tool during rock slope engineering to overcome numerous uncertainties when probabilistic and analytic results are compared.
作者
Akgun CANAL
Mutluhan AKIN
Akgun CANAL Mutluhan AKIN(17th Regional Directorate of State Hydraulic Works, Van 65040, Turkey Nev ehir Hac Bekta Veli University, Department of Geological Engineering, Nev ehir 50300, Turkey)
基金
financially supported by the Scientific Research Projects Office of YüzüncüYil University(YYU-BAP,Project Number 2012-FBEYL48)