期刊文献+

胶体法制备高活性Pt-Ni双金属纳米粒子及其甲醇催化性能研究 被引量:1

Colloidal Synthesis of Highly Active Pt-Ni Bi-metallic Nanoparticles and Their Methanol Electrocatalytic Properties
原文传递
导出
摘要 采用胶体法分别以乙酰丙酮铂(Pt(acac)_2)和乙酸镍(Ni(ac)_2·4H_2O)为前驱体制备了(1:3,1:1,3:1)不同摩尔比的Pt-Ni合金纳米粒子,将其负载在XC-72碳黑载体获得Pt-Ni/C双金属催化剂,其中Pt_3Ni/C催化剂催化活性最高,其正向扫描峰电流密度是42.5 m A·cm^(-2),分别是Pt Ni/C、Pt Ni3/C和Pt/C催化剂的3.2、5.3和1.2倍;而催化剂抗中毒能力则是Pt Ni_3/C最强(I f/I b值为23.5)。TEM和XRD分析表明Pt-Ni双金属纳米粒子单分散性好,粒径分布为2~4nm;同时XPS结果表明Ni的掺杂改变了Pt的外层电子层结构,减少了表面Pt原子对CO的吸附,释放出更多的Pt活性位,从而提高了Pt-Ni/C双金属催化剂的电催化活性和抗中毒能力。 Pt-Ni alloy nanoparticles with different atomic ratios of Pt to Ni (1:3;1:1;3:1) were prepared by colloidal synthesis method with Pt(acac)2 and Ni(ac)2?4H2O as precursors, respectively, and Pt-Ni/C bi-metallic catalysts were obtained after the nanoparticles were loaded on the surface of XC-72 carbon supports, and Pt3Ni/C catalysts displayed the best catalytic activity. The peak current density of Pt3Ni/C catalyst was 42.5 mA.cm-2 at the positive scanning, which was 3.2, 5.3 and 1.2 times as high as those of PtNi/C, PtNi3/C and Pt/C catalysts, and else the anti-poisoning ability of PtNi3/C was the strongest (If/Ib was 23.5) contorted with other samplers. TEM and XRD analysis indicated that Pt-Ni bi-metallic nanoparticles are uniformly distributed with the sizes ranging from 2 to 4 nm, and XPS demonstrated that the addition of Ni changes the external electronic structure of Pt, reduces the absorption of CO on Pt and releases more Pt active sites, which was the reason for the electrocatalytic activity and anti-poisoning ability of Pt-Ni/C catalyst improved.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第10期2697-2702,共6页 Rare Metal Materials and Engineering
基金 国家表面偏析和电化学法调控低铂纳米催化剂核壳精细结构及催化性能研究项目(51374117)
关键词 胶体合成法 Pt-Ni/C双金属催化剂 甲醇氧化 电催化性能 colloidal synthesis method Pt-Ni/C bi-metallic catalyst methanol oxidation electrocatalytic properties
  • 相关文献

参考文献23

  • 1Micoud F,Maillard F, Gourgaud A et al. Electrochemistry Communications[J] . 2009, 11: 651. 被引量:1
  • 2Wei Z D, Feng Y C, Li L et al. J Power Sources[J]. 2008,180: 84. 被引量:1
  • 3王小凤,黄自力,张海军.双金属纳米颗粒的制备方法[J].稀有金属材料与工程,2013,42(8):1751-1755. 被引量:10
  • 4Stamenkovic V R, Fowler B,Mun B S et al. Science[J]t 2007, 315:493. 被引量:1
  • 5Rusnaeni N, Nasikin M, Hendrajaya L. Journal of Engineering and Technological Sciertces[J].2011,43: 1. 被引量:1
  • 6Cantane D A, Oliveira F E R,Santos S F et al Applied Catalysis B: Environmental[J] 2013, 136-137: 351. 被引量:1
  • 7Lin G, Marc H, Stefan R et al. Nano Lett[J], 2012,12: 5423. 被引量:1
  • 8Wang C, Chi M F, Wang G ¥ et al. Advanced Functional Materials [J], 2011,21: 147. 被引量:1
  • 9Hou Zhongjun(侯中军),Yu Hongmei(俞红梅),Yi Baolian(衣 宝廉)et al.电化学[J],2000,6: 379. 被引量:1
  • 10Liu Mingyi(刘明义),He Yuanqing(河源清),Mao Zongqiang (毛宗强)et al. 电源技术[J],2002,26: 247. 被引量:1

二级参考文献45

共引文献17

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部