摘要
The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg17Al12 phase was refined and broken into some discontinuous island structures. However, some network Mg17Al12 phases still can be detected in Mg-12Al-0.7Si-0.09Sr alloy. Therefore, Sb performs better in modification and refinement of Mg17Al12 phase than does Sr. Small amounts of fine polygonal shaped Mg2Si phases were found in Mg-12AI-0.7Si-0.5Sb alloy, while the morphology of Mg2Si phases in Mg-12Al-0.7Si-0.09Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg2Si phase are more significant by adding 0.09wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 ℃.
The effects of Sb and Sr on the modification and refinement of Mg_(17)Al_(12)and Mg_2Si phases in Mg-12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al-0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope(SEM), an energy dispersive spectrometer(EDS), X-ray diffraction(XRD) and differential thermal analysis(DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg_(17)Al_(12)phase was refined and broken into some discontinuous island structures. However, some network Mg_(17)Al_(12)phases still can be detected in Mg-12Al-0.7Si-0.09 Sr alloy. Therefore, Sb performs better in modification and refinement of Mg_(17)Al_(12)phase than does Sr. Small amounts of fine polygonal shaped Mg_2Si phases were found in Mg-12Al-0.7Si-0.5Sb alloy, while the morphology of Mg_2Si phases in Mg-12Al-0.7Si-0.09 Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg_2Si phase are more significant by adding 0.09 wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 oC.
作者
Zhi-wen Wang
Hong-xia Wang
Jia-lin Gong
Ming Li
Wei-li Cheng
Wei Liang
Zhi-wen Wang Hong-xia Wang Jia-lin Gong Ming Li Wei-li Cheng Wei Liang(Shanxi Key Laboratory of Advanced Magnesium Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology;Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education)
基金
financially supported by the National Natural Science Foundation of China(Grant nos.:51301118,51404166)
the Projects of International Cooperation in Shanxi province,China(Grant no.:2014081002)
and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi province,China(Grant nos.:2013108,2014120)