期刊文献+

基于超像素和游程直方图的对比度修改检测算法 被引量:1

Contrast Modification Forensic Algorithm Based on Superpixel and Histogram of Run Length
下载PDF
导出
摘要 该文提出一种基于超像素和游程直方图的图像对比度修改检测取证算法。算法首先对图像进行超像素分割,并提取每个分割区域的游程直方图特征值,然后将不同方向的特征值进行融合,并进行归一化处理;再计算处理后的特征值数值突变量;最后将区域的数值突变量用支持向量机(SVM)进行分类识别。实验结果表明,和现有的一些算法相比,该文提出的算法计算复杂度低,在多种不同的测试数据库上都具有良好的识别性能。此外,在区域篡改检测实验中,该算法不仅可以定位出篡改区域,还能准确地描绘出篡改区域的轮廓形状。 A novel image forensic algorithm against contrast modification based on superpixel and histogram of run length is proposed. In the proposed algorithm, images are firstly divided by superpixel, then run length histogram features of each block are extracted, and those of different orientation are subsequently merged. After normalization of the prior features, the leaps in the histogram are calculated numerically. Lastly, the generated features of blocks are trained by Support Vector Machin (SVM) classifier. Large amounts of experiments show that the proposed algorithm has low cost of computation complexity. And compared with some state-of-the-art algorithms, it has better performance with many test databases. Furthermore, the proposed algorithm can not only located the tempered area, but also can exactly describe the shape of tempered area.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2787-2794,共8页 Journal of Electronics & Information Technology
基金 天津市自然科学基金(16JCYBJC15700)
关键词 图像处理 对比度修改 超像素 游程直方图 数值突变量 支持向量机(SVM) Image processing Contrast modification Superpixel Run length histogram Leaps in the histogramnumerically Support Vector Machin (SVM)
  • 相关文献

参考文献22

  • 1骆伟祺,黄继武,丘国平.鲁棒的区域复制图像篡改检测技术[J].计算机学报,2007,30(11):1998-2007. 被引量:65
  • 2李晓飞,申铉京,陈海鹏,吕颖达.基于数字签名方式的图像真伪鉴别算法[J].计算机研究与发展,2012,49(6):1348-1356. 被引量:3
  • 3ANDALIBI M and CHANDLER D. Digital image watermarking via adaptive logo texturization[J].IEEE Transactions on Image Processing, 2015, 24(12): 5060-5073. 被引量:1
  • 4CAO G, ZHAO Y, NI R, et al. Contrast enhancement-based forensics in digital images[J].IEEE Transactions on Information Forensics and Security, 2014, 9(3): 515-525. 被引量:1
  • 5ARICI T, DIKBAS S, and ALTUNBASAK Y. A histogram modification framework and its application for image contrast enhancement[J].IEEE Transactions on Image Processing, 2009, 18(9): 1921-1935. 被引量:1
  • 6CAO G, ZHAO Y, NI R, et al. Anti-forensics of contrast enhancement in digital images[C].12th ACM Workshop on Multimedia and Security, ACM, Rome, Italy, 2010: 25-34. 被引量:1
  • 7STAMM M C and LIU K J R. Forensic detection of image manipulation using statistical intrinsic fingerprints[J].IEEE Transactions on Information Forensics and Security, 2010, 5(3): 492-506. 被引量:1
  • 8DE ALESSIA Rosa, FONTANI Marco, MASSAI Matteo, et al. Second-order statistics analysis to cope with contrast enhancement counter-forensics[J].IEEE Signal Processing Letters, 2015, 22(8): 1132-1136. 被引量:1
  • 9LIN X, LI C, and HU Y. Exposing image forgery through the detection of contrast enhancement[C].2013 20th IEEE International Conference on Image Processing (ICIP), Melbourne Australia, 2013: 4467-4471. 被引量:1
  • 10CAO Gang,ZHAO Yao,NI RongRong,TIAN HuaWei,YU LiFang.Attacking contrast enhancement forensics in digital images[J].Science China(Information Sciences),2014,57(5):166-178. 被引量:1

二级参考文献61

共引文献66

同被引文献4

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部