摘要
应用F-分析法对面粉厂37种不同系统粉进行聚类分析,验证了以L*值作为衡量面粉精度指标的合理性,并提出标准模型库的概念,借助格贴近度和最大隶属原则,为其他面粉加工精度的归类和识别提供了一种新的参考方法。
The rationality of L* value as index on measuring flour milling degree was verified through analysis of 37 kinds of system flour by fuzzy cluster method in this study. A concept of standard model database was established with the help of Lattice closeness degree and Maximum membership principle. The present study provided a new reference for the classification and recognition method of flour milling degree.
出处
《河南工业大学学报(自然科学版)》
CAS
北大核心
2016年第5期107-110,共4页
Journal of Henan University of Technology:Natural Science Edition
基金
国家自然科学基金项目(11301150)
河南省自然科学基金项目(142300410134)
关键词
面粉精度指标
模糊聚类
模糊识别
格贴近度
模型库
flour milling degree index
fuzzy cluster
fuzzy recognition
lattice closeness degree
model database