期刊文献+

基于局部灰度特征的纸张计数算法研究 被引量:5

Research of Paper Counting Algorithm Based on Local Gray Feature
下载PDF
导出
摘要 针对目前在印刷及包装行业板纸机械式计数存在的噪声大、效率低、对板纸有损伤等不足,设计了基于局部灰度特征的纸张计数算法并实验验证了该算法的计数效果。该方法从板纸图像的列灰度特征出发,绘制板纸列像素灰度值变化曲线,对列像素灰度连续做减法,以找到纸张与纸张间隙灰度变化的跳变点,对得到的灰度差曲线做二值化处理,最后根据所找到的跳变点进行计数,并依据纸张宽度剔除干扰的标注点,以使计数结果更加准确。实验结果表明:该方法对于纹理单一、灰度对比明显的纸张,其计数效果理想,准确率高,达9 7%以上;且由于该算法从灰度图像列灰度特征入手,对一维数据进行处理,因此运行速度快,效率高,能满足实时快速处理的要求。 Aimed at the shortcomings of noise, inefficiency and damage in mechanical counting in printing and packaging industry, the paper counting algorithm based on local gray feature was designed with the effect of the algorithm verified by experiment. Based on column gray feature, the method could draw column pixel gray value curve, then column pixel gray was subtracted continuously for finding the transition point of paper spacing variations. Gray difference curve was subjected to binary processing; finally counting based on transition point was achieved. By eliminating interference points according to the paper width, the counting results were made more accurate. The experimental results showed that for paper with single texture and obvious gray difference, the method of counting achieved the ideal effect with high accuracy of up to 97%. As the algorithm was based upon the column gray by processing one-dimensional data, the running speed was fast with high efficiency, which could meet the requirement of real-time processing.
出处 《包装学报》 2016年第4期24-29,共6页 Packaging Journal
基金 湖南省自然科学基金资助项目(2016JJ6034) 湖南省产业化培育基金资助项目(15CY003)
关键词 局部灰度特征 板纸计数 列灰度 纸张宽度 标注点 local gray feature paper counting gray column width of the paper label points
  • 相关文献

参考文献3

二级参考文献21

  • 1何卫国,曹益平,梁友生,赵新亮,常山.基于DSP实现的光电点钞系统数据处理方法研究[J].光学技术,2004,30(4):443-445. 被引量:1
  • 2李毅,阮秋琦.应用纹理分析的纸张计数算法[J].中国图象图形学报(A辑),2004,9(9):1042-1048. 被引量:18
  • 3HILLG D, STERNBERG E. Corrugated sheet counter having discriminator in image processing circuit[P]. US, G06M-007/00, US6091792-A. 2000-10-24. 被引量:1
  • 4CHOO H G, KIM H Y. Method for counting drafting papers using computer vision system. Korea, G06F-019/00, KR2002011486-A. 2000-8-12. 被引量:1
  • 5MADHUSOODHANA C S. Method for dynamic paper counting in MFP[P]. India, B41J-003/44, IN200501703- I4. 2005-11-22. 被引量:1
  • 6IKEDAH, ABE T, ONO R, et al. Paper counting device for paper machine based on processed image[P]. Japanese, B65H-001/00, JP2008198081-A. 2008-2-15. 被引量:1
  • 7吴亚复,袁锦海,陈丽花,等.一种基于非接触式视觉纸张计数方法和计数机[P].中国.G06M7/00.CN1710606A.2005,12. 被引量:1
  • 8VINCENT L. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms[J]. IEEE Trans. On Image Process, 1993, 22(2): 176-201. 被引量:1
  • 9VINCENT L. Morphological grayscale reconstruction: definition, efficient algorithms and applications in image analysis[C]. Proc. Computer vision and pattern recognition, Champaign, IL, 1992: 633-635. 被引量:1
  • 10CHUTATAPE O, DAWSON B. A thresholding method for blood-aggregate images[J]. IEEE Trans. On Engineering in Medicine and Biology Magazine, 1996, 15(3): 103-108. 被引量:1

共引文献53

同被引文献33

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部