期刊文献+

应用监督近邻重构分析的高光谱遥感数据特征提取 被引量:9

Feature extraction of hyperspectral remote sensing data using supervised neighbor reconstruction analysis
下载PDF
导出
摘要 针对高光谱遥感数据特征提取方法的研究,提出了一种新的监督近邻重构分析(Supervised Neighbor Reconstruction Analysis,SNRA)算法。该方法首先利用同一类别的近邻数据点对各数据点进行重构;然后在低维嵌入空间中保持该重构关系不变,尽可能地分离开非同类数据点,并利用总体散度矩阵来约束数据间的相关性;最后求解得到一个最佳投影矩阵,进而提取出鉴别特征。SNRA算法不仅保持了同类数据的局部结构而且增强了非同类数据的可分性,同时减少了数据的冗余信息。在Indian Pine和KSC高光谱遥感数据集上的实验结果表明:提出的方法能更好地揭示出高光谱遥感数据的内在特性,提取出更有效的鉴别特征,改善分类效果。 For the feature extraction methods of hyperspectral remote sensing data, a new method, called supervised neighbor reconstruction analysis (SNRA), was proposed. First, this method reconstructs each point with neighbor points from the same class. Then, it preserves the reconstruction relationship and separates the data points from different classes as far as possible in low-dimension embedding space. And a total scatter matrix is used to constrain the correlation between data points. Finally, it obtains an optimized projection matrix and extracts the discriminating feature. SNRA not only preserves the local structures of intraclass data but also enhances the separability of interclass data. And it reduces the redundant information. The experiments on Indian Pine and KSC hyperspectral remote data sets show that the proposed method can better reveal the intrinsic property of hyperspectral remote sensing data and effectively extract the discriminating feature to improve the classification result.
出处 《红外与激光工程》 EI CSCD 北大核心 2016年第10期271-278,共8页 Infrared and Laser Engineering
基金 国家自然科学基金(理论物理专项)(11547196) 四川省教育厅重点资助(15ZA0229) 四川理工学院人才引进资助(2013RC07)
关键词 高光谱遥感数据分类 特征提取 监督学习 邻域重构 总体散度矩阵 hyperspectral remote sensing data classification feature extraction supervised learning neighbor reconstruction total scatter matrix
  • 相关文献

参考文献4

二级参考文献22

  • 1张兵.高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011. 被引量:35
  • 2Kambhatla N, Leen R A. Dimension reduction by local principal component analysis[J]. Neural Computation, 1997, 9(7): 149-151. 被引量:1
  • 3Manolakis D, Marden D. Dimensionality reduction of hyperspectral imaging data using local principal components transforms[C]//SPIE, 2004, 5425: 393-401. 被引量:1
  • 4Green A A, Berman M. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoseience and Remote Sensing, 1988, 26(1): 65-74. 被引量:1
  • 5Hyvorinen A, Karhunen J, Oja E. Independent Component Analysis [M]. New York: John Wiley & Sons, 2000. 被引量:1
  • 6Bor Chen Kuo, Landgrebe D A. A robust classification procedure based on mixture classification and nonparametric weighted feature extraction [J]. IEEE Trans on Geoscience and Remote Sensing, 2002, 40(11): 2486-2494. 被引量:1
  • 7Bor Chen Kuo, David Landgrebe. Improved statistics estimation and feature extraction for hyperspectral data classification [D]. Pullman: School of Electrical & Computer Engineering, 2001. 被引量:1
  • 8Norden E Huang, Zheng Shen. Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proc R Soc Lond A, 1998:. 被引量:1
  • 9Balocchi R, Menicucci D, Varanini M. Empirical mode decomposition to approach the problem of detecting sources from a reduced number of mixtures [C]//Proc Eng Med Biol Soc, 2003, 3: 2443-2446. 被引量:1
  • 10Wu Kuanlin. Use of empirical mode decomposition for dimensionality reduction and spectral unmixing of hyperspectral data [D]. Taiwan: National Cheng KungUniversity, 2004. 被引量:1

共引文献63

同被引文献84

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部