摘要
研究三阶微分方程模型的混沌性判据.研究方法主要采用待定系数法,讨论了三阶微分方程模型的同宿轨、异宿轨的存在性,以及对于不同参数其存在不同意义下的混沌吸引子.在理论分析过程中,结合什尔尼科夫引理验证其有斯梅尔马蹄映射意义下的混沌.
Numerical analysis for nonlinear chaotic Lorenz-type System is considered which exhibits different chaot- ic attractors with different eqilibrias for some parameters. The existence of heteroclinic orbits and homoclinic orbits of Sil'nikov type in a chaotic system is proved by using the undetermined coefficient method. As a result, the Sil'nikov criterion guarantees that the system has Smale horseshoes.
作者
孙丰云
王智峰
SUN Feng-yun WANG Zhi-feng(School of Mathematics and Information Sciences, Yantai University, Yantai 264005, Chin)
出处
《烟台大学学报(自然科学与工程版)》
CAS
2016年第4期238-243,共6页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
山东省教育厅基金资助项目(J14LI07)
关键词
同宿轨
异宿轨
什尔尼科夫定理
heteroclinic orbit
homoclinic orbit
Sil'nikov theorem