期刊文献+

三阶微分方程模型的混沌性判据 被引量:1

Chaotic Criterion for Three-Order Differential Equation Model
下载PDF
导出
摘要 研究三阶微分方程模型的混沌性判据.研究方法主要采用待定系数法,讨论了三阶微分方程模型的同宿轨、异宿轨的存在性,以及对于不同参数其存在不同意义下的混沌吸引子.在理论分析过程中,结合什尔尼科夫引理验证其有斯梅尔马蹄映射意义下的混沌. Numerical analysis for nonlinear chaotic Lorenz-type System is considered which exhibits different chaot- ic attractors with different eqilibrias for some parameters. The existence of heteroclinic orbits and homoclinic orbits of Sil'nikov type in a chaotic system is proved by using the undetermined coefficient method. As a result, the Sil'nikov criterion guarantees that the system has Smale horseshoes.
作者 孙丰云 王智峰 SUN Feng-yun WANG Zhi-feng(School of Mathematics and Information Sciences, Yantai University, Yantai 264005, Chin)
出处 《烟台大学学报(自然科学与工程版)》 CAS 2016年第4期238-243,共6页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 山东省教育厅基金资助项目(J14LI07)
关键词 同宿轨 异宿轨 什尔尼科夫定理 heteroclinic orbit homoclinic orbit Sil'nikov theorem
  • 相关文献

参考文献8

  • 1ZHENG Z H,CHEN G.Existence of heteroclinic orbits of the Sil’nikov type in a 3-D quadratic autonomous chaotic system[J].Electronic Power Energy System,1999,21:375-393. 被引量:1
  • 2LORENZ E N.Deterministic nonperiodic flow[J].Journal Atmos Science,1963,20:130-141. 被引量:1
  • 3SPARROW C.The Lorenz Equations:Bifurcations,Chaos,and Strange Attractors[M].New York:Spring-Verlag,1982. 被引量:1
  • 4LJ,CHEN G.A new chaotic attractor coined[J].International Journal of Bifurcation and Chaos,2002,12:659. 被引量:1
  • 5CHEN G,UETA T.Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos,1999,9:1465. 被引量:1
  • 6SIL’NIKOV L P.A case of the existence of a countable number of periodic motions[J].Sov Math Docklady 6:163-166. 被引量:1
  • 7SIL’NIKOV L P.A contribution of the prob lem of the structure of an extended neighborhood of rough equilibrium state of saddlefocus type[J].Math USSR Shornik 10:91-102. 被引量:1
  • 8WANG J W,ZHAO M C.Sil’nikov-type orbits of Lorenz-family systems[J].Physica A,2007,375:438-446. 被引量:1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部