期刊文献+

双系统合作式协同进化算法求解不可分解函数 被引量:2

Dual-system cooperative co-evolutionary algorithm for non-separable function
下载PDF
导出
摘要 针对不可分解函数求解问题,基于合作式协同进化(cooperative co-evolutionary,CC)框架,发展一种双系统协同进化算法。该算法给出一种双系统A,B的CC框架新结构形式及其相应的协调机制,以增加算法的多样性和收敛性;给出双系统A,B各自求解的两种算法,例如差异进化、改进粒子群算法选择原则和匹配方式,使该两种算法具互补性,并且与双系统A,B各自角色相匹配,目的是提高基于CC框架双系统算法的计算性能。经不可分解函数集(维数D=1 000)测试表明,本文算法计算性能(计算精度和标准差)与其他3种典型算法相比,对于其中某些函数求解占优,总体上4种算法对函数集的求解各有所长,具有互补性。 Aiming at solving the non-separable function optimization problem, a dual-system cooperative coevolutionary differential evolution particle swarm optimization algorithm (DCCDE/PSO for short) is developed based on the dual-system cooperative co-evolutionary (CC) framework. The proposed algorithm gives a new CC framework of the dual-system A and B and its corresponding coordination mechanism for improving the diversity and convergence, and gives two algorithms for example differential evolution (DE), the improved particle swarm optimization (PSO) that it solves the systems A and B respectively, as well as complementary and matches with the roles that the systems A and B play in the dual system. The purpose is to improve computational performance of the dual system algorithm based on the CC framework. The numerical experimental results of non separable Benchmark functions (1000 dimensional) show that the performance (computational accuracy and standard deviation) of the proposed DCCDE/PSO compared favorably against other three representative algorithms has advantages for some of functions and as a whole the four algorithms had theirsetves's strengths for the Benchmark functions and each complemented the other.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第11期2660-2669,共10页 Systems Engineering and Electronics
基金 国家自然科学基金(61472062)资助课题
关键词 不可分解函数优化 合作式协同进化 双系统框架 现代启发式算法 算法选择和匹配 non-separable function optimization cooperative co-evolution dual-system framework modern heuristic algorithm algorithm selection and match
  • 相关文献

参考文献1

二级参考文献10

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth, 1995: 1942-1948. 被引量:1
  • 3Bergh F V D. An analysis of particle swarm optimizers[D]. Pretoria: Faculty of Natural and Agricultural Science, University of Pretoria, 2001. 被引量:1
  • 4Sun Jun, Xu Wenbo, Feng Bin. A global search strategy of quantum-behaved particle swarm optimization[C]. Proc of IEEE Conf on Cybernetics and Intelligent Systems. Singapore: IEEE Press, 2004:111-116. 被引量:1
  • 5Larrahaga P, Lozano J A. Estimation of distribution algorithms: A new tool for evolutionary computation[M].Boston: Kluwer Academic Publishers, 2002. 被引量:1
  • 6Pelikan M, Goldberg D E, Lobo E A survey of optimization by building and using probabilistic models[J]. Computational Optimization and Applications, 2002, 21(1): 5-20. 被引量:1
  • 7Clerc M, Kennedy J. The particle swarm: Explosion, stability and convergence in a multi dimentional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 8Sun Jun, Xu Wenbo, Feng Bin. Adaptive parameter control for quantum-behave particle swarm optimization on individual level[C]. Proc of IEEE Int Conf on Systems, Man and Cybernetics. Hawii: IEEE Press, 2005: 3049- 3054. 被引量:1
  • 9Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102. 被引量:1
  • 10Shi Y, Eberhart R C. A modified particle swarm[C]. Proc of IEEE Int Conf on Evolutionary Computation. Alaska: IEEE Press, 1998: 1945-1950. 被引量:1

共引文献22

同被引文献7

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部