期刊文献+

人体线粒体N-乙酰氨基葡萄糖转移酶在酿酒酵母中的表达 被引量:3

Expression of A Human Mitochondrial N-acetylglucosamine Transferase in Saccharomyces cerevisiae
下载PDF
导出
摘要 O-GlcNAc是一种广泛存在于蛋白质丝/苏氨酸残基上的动态可逆的蛋白质翻译后修饰方式,广泛分布在细胞浆和细胞核中,参与调节多种细胞途径。蛋白质的O-GlcNAc糖基化与许多疾病密切相关,如糖尿病、神经退行性疾病和癌症等。在体内,O-GlcNAc动态修饰由N-乙酰氨基葡萄糖转移酶(OGT)和N-乙酰氨基葡萄糖苷酶(OGA)协同完成。OGT具有3种异构体,分别是ncOGT、mOGT和sOGT。目前对于mOGT的功能和调节机制尚未清楚。作者在酿酒酵母细胞中表达了人源的mOGT,发现mOGT抑制酵母细胞的生长。在酿酒酵母细胞中mOGT具有O-GlcNAc糖基化活性,当其活性位点突变后,O-GlcNAc糖基化活性明显降低,但其同样能抑制酵母细胞生长。作者在酿酒酵母细胞中构建了研究mOGT的系统。可以利用该人源化的酵母筛选和mOGT相互作用的蛋白质和基因,也可以用来筛选抑制mOGT活性的药物,进而研究mOGT的功能与调节机制。 N-acetylglucosamine (O-GlcNAc) modification on protein serines/threonines is a dynamic,inducible and abundant post-translational modification,which is found on numerous cytoplasm and nucleus proteins,regulating many cellular process. I t has demonstrated that O-GlcNAc plays important roles in some human diseases, such as diabetes and neurodegenerative. O-GlcNAcylation cycle is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in vivo. There are three isoforms of OGT have been found in mammalian cell. They are nucleoplasmic OGT( ncOGT),mitochondrial OGT (mOGT) and shorter OGT(sOGT). We have expressed mOGT in yeast cells with a final goal to study its biological ftinction. A certain number of yeast proteins were clearly revealed in mOGT overexpressed cells, demonstrating the activity of mOGT in yeast cells. Furthermore, it was found that human mOGT protein inhibited the cell growth of yeast. This humanized yeast strain can be used for studying the biological function and the regulation mechanism of human mOGT.
出处 《食品与生物技术学报》 CAS CSCD 北大核心 2016年第9期987-992,共6页 Journal of Food Science and Biotechnology
基金 教育部科学技术研究重大项目(313027) 中央高校基本科研业务费专项项目(JUSRP311A02)
关键词 O-GlcNAc糖基化 人源化 酿酒酵母 线粒体N-乙酰氨基葡萄糖转移酶(mOGT) O-GlcNAc modification, humanization,Saccharomyces cerevisiae, mitochondrial O-GlcNAc transferase (mOGT)
  • 相关文献

参考文献1

二级参考文献40

  • 1Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes, Evidence for O linked GlcNAc. J Biol Chem 1984; 259(5): 3308-17. 被引量:1
  • 2Hart GW, Housley MP, Slawson C. Cycling of O-linked 13-N- acetylglucosamine on nucleocytoplasmic proteins. Nature 2007; 446(7139): 1017-22. 被引量:1
  • 3Kang JG, Park SY, Ji S, Jang I, Park S, Kim HS, et al. O-GlcNAc protein modification in cancer cells increases in response to glucose deprivation through glycogen degradation. J Biol Chem 2009; 284(50): 34777-84. 被引量:1
  • 4Yi W, Elark PM, Mason DE, Keenan MC, Hill C, Peters EC, et al. Phosphofructokinase-1 glycosylation regulates cell growth and metabolism. Science 2012; 337(6097): 975-80. 被引量:1
  • 5Forrest AR, Ravasi T, Taylor D, Huber T. Phosphoregulators: Protein kinases and protein phosphatases of mouse. Genome Res 2003; 13(6B): 1443-54. 被引量:1
  • 6Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O- GIcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 1999; 274(45): 32015-22. 被引量:1
  • 7Gao Y, Wells L, Comer FI, Parker G J, Hart GW. Dynamic O-gly- cosylation of nuclear and cytosolic proteins: Cloning and char- acterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 2001,276(13): 9838-45. 被引量:1
  • 8Shaft R, Lyer SP, Ellies LG, O'Donnell N, Marek KW, Chui D. The O-GIcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse on- togeny. Proc Natl Acad Sci USA 2000; 97(11): 5735-9. 被引量:1
  • 9Davies G J, Martinez-Fleites C. The O-GlcNAc modification: Three-dimensional structure, enzymology and the development of selective inhibitors to probe disease. Biochem Soc Trans 2010; 38(5): 1179-88. 被引量:1
  • 10Hanover JA, Yu S, Lubas WB, Shin SH, Kochran J, Love DC, et al. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 2003; 409(2): 287-97. 被引量:1

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部