期刊文献+

基于融合特征的虚假评论检测方法 被引量:3

Fake Reviews Detection Method Based on Integrated Features
下载PDF
导出
摘要 针对现有虚假评论检测方法未充分利用用户历史行为中蕴含的动态信息,首先利用时序分析模型从这些动态信息中挖掘能够刻画用户行为的动态特征;其次,融合这些动态特征与用户层面静态特征发现可疑用户,并将用户可疑概率传播至用户所发表评论得到评论可疑概率;最后,融合评论可疑概率与评论层面静态特征形成融合特征,使用PU-Learning分类策略实现虚假评论的检测。真实数据集上的实验表明,本文方法的性能优于现有方法。 Considering that the existing detection methods fail to use the dynamic information contained in user sequential behaviors for the identification of fake reviews, this paper suggests a novel fake reviews detection algorithm to integrate the dynamic information. Firstly, a timing analysis model is used to extract the dynamic features which could characterize the dynamic information; secondly, the dynamic features are integrated with user static features to find suspicious users, and then suspicious probabilities of users are propagated to the user reviews; finally, the reviews probabilities are integrated with review features to construct a feature set, and a PU-Learning strategy is proposed to detect fake reviews. Experimental results on real data sets show that the method in the paper is superior to the existing methods.
出处 《信息工程大学学报》 2016年第4期504-508,512,共6页 Journal of Information Engineering University
关键词 时序分析 动态特征 融合特征 虚假评论 PU-Learning timing analysis dynamic features fusion features fake reviews PU-learning
  • 相关文献

参考文献11

  • 1Jindal N, Liu B. Review spam detection [ C ]//Proceed- ings of the 16th international conference on World Wide Web. 2007 : 1189-1190. 被引量:1
  • 2Luca M, Zervas G. Fake It Till You Make It: Reputa- tion, Competition, and Yelp Review Fraud[ Z]. Harvard Business School Working Paper. 2013:14-006. 被引量:1
  • 3Wang G, Xie S, Liu B, et al. Review graph based online store review spammer detection [ C ]//IEEE 11 th Interna- tional Conference on Data Mining. 2011: 1242-1247. 被引量:1
  • 4Lim E P, Nguyen V A, Jindal N, et al. Detecting prod- uct review spammers using rating behaviors [ C ]//Pro- ceedings of the 19th ACM international conference on In- formation and knowledge management. 2010: 939-948. 被引量:1
  • 5Xie S, Wang G, Lin S, et al. Review spam detection via temporal pattern discovery [ C ]//Proceedings of the 18th ACM SIGKDD international conference on Knowledge dis- covery and data mining. 2012: 823-831. 被引量:1
  • 6Wu G, Greene D, Cunningham P. Merging multiple cri- teria to identify suspicious reviews [ C ]//Proceedings of the fourth ACM conference on Recommender systems. 2010:241-244. 被引量:1
  • 7Hern6ndez D, Guzm6n R, M6ntes y Gomez M, et al. U- sing PU-learning to detect deceptive opinion spare [ C ]// Proceedings of the 4th Workshop on Computational Ap- proaches to Subjectivity, Sentiment and Social Media A- nalysis. 2013 : 38-45. 被引量:1
  • 8Liu B, Lee W S, Yu P S, et al. Partially supervised classification of text documents [ C ]//Proceedings of the 19th international conference on Machine learning. 2002:387-394. 被引量:1
  • 9Liu B, Dai Y, Li X, et al. Building text classifiers using positive and unlabeled examples [ C ]//Third IEEE Inter- national Conference on Data Mining. 2003: 179-186. 被引量:1
  • 10Li H, Chen Z, Liu B, et al. Spotting Fake Reviews via Collective Positive-Unlabeled Learning[ C ]//IEEE 14th International Conference on Data Mining. 2014: 899 -904. 被引量:1

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部