期刊文献+

Why did life develop on the surface of the Earth in the Cambrian?

Why did life develop on the surface of the Earth in the Cambrian?
下载PDF
导出
摘要 Life was limited for most of Earth's history, remaining at a primitive stage and mostly marine until about 0.55 Ga. In the Paleozoic, life eventually exploded and colonized the continental realm. Why had there been such a long period of delayed evolution of life? Early life was dominated by Archaea and Bacteria, which can survive ionizing radiation better than other organisms. The magnetic field preserves the atmosphere, which is the main shield of UV radiation. We explore the hypothesis that the Cambrian explosion of life could have been enabled by the increase of the magnetic field dipole intensity due to the solidification of the inner core, caused by the cooling of the Earth, and the concomitant decrease with time of the high-energy solar flux since the birth of the solar system. Therefore, the two phenomena could be responsible for the growth and thickening of the atmosphere and the development of land surface life. Life was limited for most of Earth's history, remaining at a primitive stage and mostly marine until about 0.55 Ga. In the Paleozoic, life eventually exploded and colonized the continental realm. Why had there been such a long period of delayed evolution of life? Early life was dominated by Archaea and Bacteria, which can survive ionizing radiation better than other organisms. The magnetic field preserves the atmosphere, which is the main shield of UV radiation. We explore the hypothesis that the Cambrian explosion of life could have been enabled by the increase of the magnetic field dipole intensity due to the solidification of the inner core, caused by the cooling of the Earth, and the concomitant decrease with time of the high-energy solar flux since the birth of the solar system. Therefore, the two phenomena could be responsible for the growth and thickening of the atmosphere and the development of land surface life.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第6期865-873,共9页 地学前缘(英文版)
基金 The contribution of M.C. was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA), with support from the NASA Astrobiology Institute (NAI-WARC)
关键词 Origin of lifeInner core solidificationSolar ionizing radiations Origin of lifeInner core solidificationSolar ionizing radiations
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部