期刊文献+

隔热材料的热导率与孔径分布的相关性研究 被引量:10

Correlation of thermal conductivity and pore size distribution of insulating refractories
下载PDF
导出
摘要 为了进一步研究不规则气孔的孔径分布对隔热材料热导率的影响,以板状刚玉粉、α-Al2 O3微粉、ρ-Al2 O3微粉和金属铝粉为主要原料,添加不同量(质量分数分别为0、5%、10%、15%、20%、25%和30%)的≤0.045 mm 的锯末作为造孔剂,以 PVA 溶液为结合剂,经配料、混练、成型、干燥和1550℃保温3 h 烧成后,制备了氧化铝质隔热材料试样。检测了试样的体积密度、总气孔率、闭口气孔率和热导率,采用扫描电子显微镜(SEM)和金相图像分析系统(MIAPS)对烧后试样进行了表征,然后借助灰色关联理论分析了试样热导率与其孔径分布的相关性。结果表明:随着锯末添加量的增加,试样的气孔率和平均孔径逐渐增大,热导率逐渐减小;<2、2~6和>18μm 的气孔对试样热导率有显著影响。 In order to investigate the effect of irregular pore size distribution on the thermal conductivity of in-sulating refractories further,alumina insulating refractories were fabricated using tabular alumina powder,α-Al2 O3 micropowder,ρ-Al2 O3 micropowder,aluminum powder,different amounts of sawdust (0,5%,10%, 15%,20%,25%,and 30% by mass,≤0.045 mm)as the pore-forming agent and PVA as the binder.After batching,mixing,shaping and drying,all the specimens were fired at 1 550 ℃ for 3 h.Then the bulk densi-ty,total porosity,closed porosity and thermal conductivity of the specimens were measured.Also,SEM and Micro-image Analysis and Process System (MIAPS)software were carried out to investigate the correlation of pore size distribution and thermal conductivity.The results show that with the increasing of sawdust,both the porosity and the average pore size increase gradually whereas the thermal conductivity decreases.The thermal conductivity is strongly affected by the 〈2 μm,2 -6 μm and 〉18 μm pores.
出处 《耐火材料》 CAS 北大核心 2016年第5期335-339,共5页 Refractories
基金 国家自然科学基金资助项目(51502213)
关键词 隔热材料 热导率 孔径分布 气孔结构参数 相关性研究 灰色关联理论 insulating refractories thermal conductivity pore size distribution pore structure parameter cor-relation grey relation theory
  • 相关文献

参考文献5

二级参考文献48

  • 1王玉范,张周明,吕迎春.氧化铝空心球浇注料的研制及应用[J].耐火材料,1995,29(6):329-332. 被引量:2
  • 2石振海,李克智,李贺军,王闯,李照谦.闭孔碳微球泡沫材料制备工艺与性能研究[J].功能材料,2005,36(12):1944-1946. 被引量:13
  • 3WANG W, MCCOOL G, KAPUR N, et al. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd) Mn2O5 for NO oxidation in diesel exhaust. Science, 2012, 337(6096): 832–835. 被引量:1
  • 4TURNBULL M M, LANDEE C P. Porous materials with a difference. Science, 2002, 298(5599): 1723–1724. 被引量:1
  • 5LATELLA B A, HENKEL L, MEHRTENS E G. Permeability and high temperature strength of porous mullite-alumina ceramics for hot gas filtration. Journal of Materials Science, 2006, 41(2): 423–430. 被引量:1
  • 6STUDART A R, GONZENBACH U T, TERVOORT E, et al. Processing routes to macroporous ceramics: a review. Journal of the American Ceramic Society, 2006, 89(6): 1771–1789. 被引量:1
  • 7CHOU K S, LEE T K, LIU F J. Sensing mechanism of a porous ceramic as humidity sensor. Sensors and Actuators B: Chemical, 1999, 56(1): 106–111. 被引量:1
  • 8RONCARI E, GALASSI C, BASSARELLO C. Mullite suspensions for reticulate ceramic preparation. Journal of the American Ceramic Society, 2000, 83(12): 2993–2998. 被引量:1
  • 9SHE J H, OHJI T. Porous mullite ceramics with high strength. Journal of Materials Science Letters, 2002, 21(23): 1833–1834. 被引量:1
  • 10GUO X, LI W, NAKANISHI K, et al. Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the Sol-Gel process accompanied by phase separation. Journal of the European Ceramic Society, 2013. 被引量:1

共引文献24

同被引文献102

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部