期刊文献+

基于分层特征融合的行人分类 被引量:2

Pedestrian classification based on hierarchical features fusion
下载PDF
导出
摘要 针对复杂环境中的行人检测问题,提出了一种有效的基于分层稀疏编码的图像表示方法。首先通过两层稀疏编码模型结合基于K-SVD的深度学习算法来获得图像的稀疏表示,对图像块及同一区域的高阶依赖关系进行了建模,形成一个有效的无监督特征学习方法;然后将得到的稀疏表示与SIFT描述符的稀疏表示进行特征融合,得到了更加全面、更加可判别的图像表示;最后结合SVM分类器应用于行人分类任务。实验结果表明,该行人分类方法对比同类方法在性能上有明显改善。 Aiming at pedestrian detection problem in complex environments, we propose an effective image representation method based on hierarchical sparse coding. First, we obtain the sparse representation by a two-layer sparse coding model combined with a K-SVD based deep learning algorithm. We then model image blocks and higher-order dependencies of the same region, forming an effective unsupervised feature learning method. After that, we fuse the sparse representation with the sparse representation of the SIFT descriptor, obtaining a more comprehensive and more discriminant image representation. Finally, together with the SVM classifier, it is applied to pedestrian classification tasks. Experimental results show that the pedestrian classification method has very competitive performance in comparison with other similar methods.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第10期2115-2120,共6页 Computer Engineering & Science
基金 国家自然科学基金(61471154) 教育部留学回国人员科研启动基金
关键词 行人分类 稀疏编码 空间金字塔匹配 特征融合 K—SVD pedestrian classification sparse coding spatial pyramid matching feature fusion K-SVD
  • 相关文献

参考文献1

二级参考文献24

  • 1韩东峰,李文辉,郭武.基于潜在局部区域空间关系学习的物体分类算法[J].计算机学报,2007,30(8):1286-1294. 被引量:5
  • 2Vailaya A,Figueiredo M A T,Jain A K.Image classification for content-based indexing.IEEE Transactions on Image Processing,2001,10(1):117-130. 被引量:1
  • 3Szummer M,Picard R W.Indoor-outdoor image classification //Proceedings of the 1998 IEEE International Workshop on Content Based Access of Image and Video Database.Bombay,India,1998:42-51. 被引量:1
  • 4Oliva A,Torralba A.Modeling the shape of the scene:A holistic representation of the spatial envelope.International Journal of Computer Vision,2001,42(3):145-175. 被引量:1
  • 5Boureau Y L,Bach F,LeCun Y.Learning mid level features for recognition//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,USA,2010:2559-2566. 被引量:1
  • 6Jiang H,Xu J.Improved bags-of-words algorithm for scene recognition//Proceedings of the 2nd International Conference on Signal Processing Systems.Dalian,China,2010,2:279-282. 被引量:1
  • 7Hofmann T.Unsupervised learning by probabilistic latent semantic analysis.Journal of Machine Learning Research,2001,42(1 2):177-196. 被引量:1
  • 8Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation.Journal of Machine Learning Research,2003,3:993-1022. 被引量:1
  • 9Bosch A,Zisserman A,Munoz X.Scene classification using a hybrid generative/discriminative approach.IEEE Transac tions on Pattern Analysis and Machine Intelligence,2008,30(4):712-727. 被引量:1
  • 10Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene cate gories//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,US,2006:2169-2178. 被引量:1

共引文献25

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部