期刊文献+

具有Neumann边界条件的非局部多孔体介质方程解的爆破时间下界估计 被引量:2

Lower Bounds Estimates of the Blow-up Time for a Nonlinear Nonlocal Porous Medium Equation with Neumann Boundary Condition
下载PDF
导出
摘要 本文中研究一类具有非齐次Neumann边界条件的非局部多孔体介质方程解的爆破现象。对边界流为线性源及线性吸收情形,利用微分不等式技巧得到解发生爆破时爆破时间下界估计值。 In this paper,the blow-up phenomena of a nonlinear nonlocal porous medium equation with nonhomogeneous Neumann boundary condition are investigated.By using a differential inequality technique,lower bounds estimates of the blow-up time are obtained when boundary flux is linear source or linear absorption.
作者 方钟波 柴艳
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第9期129-132,共4页 Periodical of Ocean University of China
基金 山东省自然科学基金项目(ZR2012AM018) 中央高校基本科研基金项目(201362032)资助~~
关键词 多孔体介质方程 非局部源 NEUMANN边界条件 爆破时间下界 porous medium equation nonlocal source Neumann boundary condition the lower bound of blow-up time
  • 相关文献

参考文献12

  • 1Bebernes J , Eberly D. Mathematical Problems from Combustion Theory [M]. New York:Springer-Verlag, 1989. 被引量:1
  • 2Wu Z, Zhao J, Yin J,et al. Nonlinear Diffusion Equations [M].Singapore: World Scientific, 2001. 被引量:1
  • 3Levine H A. The role of critical exponents in blow-up theorems [J]. SIAM Rev, 1990, 32; 262-288. 被引量:1
  • 4Samarskii A A, Kurdyumov S P, Galaktionov V A , et al. Now- up in Problems for Quasilinear Parabolic Equations [M]. Moseow: Nauka, 1987, Berlin: Walter de Gruyter, 1995. 被引量:1
  • 5Levine H A. Nonexistence of global weak solutions to some prop- erly and improperly posed problems of mathematical physics: The method of unbounded fourier coefficients [J]. Math Ann, 1975, 214: 205-220. 被引量:1
  • 6Gao X, Ding J, Guo B Z. Blow up and global solutions for quasilin- ear parabolic equations with Neumann boundary conditions [J]. Applicable Analysis, 2009, 88: 183-191. 被引量:1
  • 7Song J C. Lower bounds for the blow-up time in a non-local reac- tion-diffusion problem [ J ]. Applied Mathematics Letter, 2011, 24: 793-796. 被引量:1
  • 8刘灯明,穆春来,辛巧.LOWER BOUNDS ESTIMATE FOR THE BLOW-UP TIME OF A NONLINEAR NONLOCAL POROUS MEDIUM EQUATION[J].Acta Mathematica Scientia,2012,32(3):1206-1212. 被引量:20
  • 9Fang Z B, Yang R, Chai Y. Lower bounds estimate for the blow- up time of a slow diffusion equation with nonlocal source and inner absorption [J]. Mathematical Problems in Engineering, 2014 ,42: ID764248 : 6. 被引量:1
  • 10Li F, Xie C. Global existence and blow-up for a nonlinear porous medium equation[J].Appl Math Lett, 2003, 16: 185-192. 被引量:1

二级参考文献1

共引文献19

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部