期刊文献+

非线性随机时滞微分系统的脉冲镇定(英文)

Impulsive Stabilization of Nonlinear Stochastic Delay Differential Systems
下载PDF
导出
摘要 本文研究一类非线性随机时滞微分系统的脉冲镇定.利用Lyapunov函数,Razumikhin和一些分析的技巧得到系统基于线性矩阵不等式形式的均方稳定性判据,该判据表明适当的脉冲可以用来镇定不稳定的随机时滞系统.与此同时,数值例子及仿真证明了本文方法的有效性. This paper mainly studies the problem of impulsive stabilization of nonlinear stochastic delay differential systems. By using Lyapunov functions, Razumikhin theorem and some analysis techniques, the sufficient conditions for mean square exponential stability are developed in terms of linear matrix inequalities(LMIs), which shows that unstable stochastic delay systems may be stabilized by appropriate impulses. Meanwhile, two examples with numerical simulations are given to illustrate the effectiveness of the results obtained.
出处 《应用数学》 CSCD 北大核心 2016年第4期826-836,共11页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11301004,61403002,61273126) the Anhui Provincial Nature Science Foundation(1308085QA15,1308085MA01,1508085QA01) the Excellent Youthful Talent Foundation of Colleges and Universities of Anhui Province of China(2013SQRL024ZD) the Postdoctoral Sus-tentation Fund of Jiangsu Province of China(1402021C) Provincial Natural Science Research Project of Anhui Colleges(KJ2014A010) Research Fund for Doctor Station of Ministry of Education of China(20113401110001)
关键词 脉冲镇定 随机微分系统 时滞 均方稳定 LYAPUNOV函数 Razumikhin型技巧 线性矩阵不等式 Impulsive stabilization Stochastic differential system Delay Exponentialstability in mean square Razumikhin technique Lyapunov function Linear matrixinequalities(LMIs)
  • 相关文献

参考文献1

二级参考文献26

  • 1Hale,J.K.(1977).Functional Differential Equations.Springer-Verlag,New York. 被引量:1
  • 2Huang,L.,Mao,X.& Deng,F.(2008).Stability of hybrid stochastic retarded systems.IEEE Transactions on Circuits and Systems-Ⅰ:Regular Papers,50(11):3413-3420. 被引量:1
  • 3Lakshmikantham,V.,Bainov,D.D.& Simeonov,P.S.(1989).Theory of Impulsive Differential Equations.World Scientific,Singapore. 被引量:1
  • 4Lakshmikantham,V.& Liu,X.(1989).Stability criteria for impulsive differential equations in terms of two measures.Journal of Mathematical Analysis and Applications,137:591-604. 被引量:1
  • 5Liu,B.(2008).Stability of solutions for stochastic impulsive systems via comparisonapproach.IEEE Transactions on Automatic Control,53(9):2128-2133. 被引量:1
  • 6Liu,X.& Ballinger,G.(2001).Uniform asymptotic stability of impulsive delay differential equations.Computers and Mathematics with Applications,41:903-915. 被引量:1
  • 7Liu,K.& Yang,G.(2009).The improvement of Razumikhin type theorems for impulsive functional differential equations.Nonlinear Analysis,70:3104-3109. 被引量:1
  • 8Luo,Z.& Shen,J.(2002).New Razumikhin type theorems for impulsive functional differential equations.Applied Mathematics and Computation,125:375-386. 被引量:1
  • 9Luo,Z.& Shen,J.(2006).Global existence results for impulsive functional differential equations.Journal of Mathematical Analysis and Applications,323:644-653. 被引量:1
  • 10Mao,X.(1996).Razumikhin-type theorems on exponential stability of stochastic functional differential equations.Stochastic Processes and Their Applications,65:233-250. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部