期刊文献+

四叉树与多种活动轮廓模型相结合的遥感影像水边线提取方法 被引量:10

A Waterline Extraction Method from Remote Sensing Image Based on Quad-tree and Multiple Active Contour Model
下载PDF
导出
摘要 通过对测地线活动轮廓(GAC)模型、Chan-Vese(CV)模型、局部二值拟合(LBF)模型的分析,将基于边缘和区域的活动轮廓模型以及基于四叉树的影像分割方法有机结合,提出了一种基于四叉树和多种活动轮廓模型的水边线提取方法。该方法首先对影像进行四叉树分割,为模型演化提供初始轮廓;然后利用CV模型的全局区域图像统计信息和LBF模型的局部区域图像统计信息构造新的符号压力函数,利用改进的符号压力函数代替GAC模型的边界停止函数,有效地改善了GAC模型提前停止演化和过度演化的问题;最后采用二值选择和高斯滤波正则化水平集方法(SBGFRLS)进行演化,避免了重新初始化和规则化,提高了水平集演化的效率。试验结果表明该方法对于包括弱边缘和严重凹陷边缘的水边线提取效果均良好,具有亚像素提取精度,并且提取速度快、稳定性好。 After the characteristics of geodesic active contour model( GAC),Chan-Vese model( CV) and local binary fitting model( LBF) are analyzed,and the active contour model based on regions and edges is combined with image segmentation method based on quad-tree,a waterline extraction method based on quad-tree and multiple active contour model is proposed in this paper. Firstly,the method provides an initial contour according to quadtree segmentation. Secondly,a new signed pressure force( SPF) function based on global image statistics information of CV model and local image statistics information of LBF model has been defined,and then,the edge stopping function( ESF) is replaced by the proposed SPF function,which solves the problem such as evolution stopped in advance and excessive evolution. Finally,the selective binary and Gaussian filtering level set method is used to avoid reinitializing and regularization to improve the evolution efficiency. The experimental results show that this method can effectively extract the weak edges and serious concave edges,and owns some properties such as sub-pixel accuracy,high efficiency and reliability for waterline extraction.
出处 《测绘学报》 EI CSCD 北大核心 2016年第9期1104-1114,共11页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41101396 41001262) 地理信息工程国家重点实验室开放研究基金(SKLGIE2015-M-3-3)~~
关键词 四叉树 GAC模型 CV模型 LBF模型 水边线提取 quad-tree GAC model CV model LBF model waterline extraction
  • 相关文献

参考文献10

二级参考文献114

共引文献144

同被引文献132

引证文献10

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部