期刊文献+

基于遗传算法的二次回归方程在沉降数据处理中的应用 被引量:1

Application of Two Regression Equation Based on Genetic Algorithm in Settlement Data Processing
下载PDF
导出
摘要 软基路基沉降与其影响因素之间呈非线性关系。以某软基高速公路为例,以时段天数、时段载荷量及时段加载平均速率为解释变量,以时段沉降量为被解释变量,建立了非线性二次回归模型,并用遗传算法估算模型系数。工程实例表明,经遗传算法优化的非线性二次回归方程具有较高的预测精度,效果优于神经网络,用该模型进行软基高速公路沉降预测分析是可行的。 There is non-linear relationship between the settlement and the influence factors of soft subgrade.Taking a soft subgrade expressway as an example, taking the period of time, the load of time and the loaded average rate of time as the explanatory variables, and taking the settlement of time as the explained variable,the nonlinear quadratic regression model is established. And the genetic algorithm is used to estimate model coefficients. The engineering cases show that the nonlinear regression equation optimized by the genetic algorithm has the higher prediction accuracy, its effect is better than the neural network, and it is feasible to use this model for the forecast analysis of soft subgrade expressway settlement.
出处 《城市道桥与防洪》 2016年第10期149-151,18-19,共3页 Urban Roads Bridges & Flood Control
基金 兰州市科学技术局计划项目(兰财建发〔2015〕85号) 兰州石化职业技术学院科技资助项目(院发〔2015〕69号) 甘肃省科技厅计划项目(1204GKCA004) 甘肃省财政厅专项资金立项资助(甘财教〔2013〕116号)
关键词 路基沉降 二次回归方程 神经网络 遗传算法 预测分析 subgrade settlement two regression equation neural network genetic algorithm prediction analysis
  • 相关文献

参考文献9

二级参考文献23

共引文献77

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部