摘要
针对炼厂气多目标回收工艺设计时缺乏理论指导的问题,本文系统阐述了分离过程能效比的概念,将气体分离过程中压力和温度变化导致系统与外界交换的能量统一用电功表示,得到了分离过程能耗与产品回收量间关系的定量表示方法;以某厂炼厂气回收过程为例,比较了不同分离技术和不同分离过程的能效比。当产品氢纯度要求不高(≥97%)时,采用变压吸附(PSA)工艺的能效比较高(0.86),与膜分离工艺相比,提高了28%;当产品氢纯度要求较高(≥99.9%)时,采用膜分离-PSA工艺可以获得更高的能效比(0.54),与PSA-膜分离工艺相比,能效比提高了40%。研究结果表明:分离过程的能效比可以用于评价不同分离技术或不同分离过程的能量效率,可用于指导不同分离技术的适用范围和多技术耦合工艺过程的设计,能够为炼厂气回收工艺设计提供一定的理论指导。
The industrial process design lacks theoretical guidances for multiple target recovery from refinery gas. In this study,the concept of energy efficiency ratio was proposed for separation process. By using the electrical power to represent the energy associated with the variation of pressure and temperature during the gas separation process, a quantitative relationship between the energy consumption and the target product recovery was established. A typical refinery gas recycling process was taken as example,in which various separation technologies such as membrane or pressure swing adsorption(PSA)were utilized for thorough investigation. The energy efficiency ratios of various separation technologies and different separation processes were calculated. Results showed that,when H2 purity of product is relatively low(≥97%),PSA technology achieves the higher value of energy efficiency ratio(0.86),which is 28% higher comparing to the membrane separation technology. When H2 purity of product is relatively high(≥99.9%),the hybrid membrane-PSA process achieves the higher energy efficiency ratio(0.54)than the hybrid PSA-membrane process,and the increase is about 40%. It indicates that the energy efficiency ratio can be employed to evaluate the efficiency of energy consumption of various separation technologies or different separation processes,and can provide a useful design guidance for refinery gas recycling process.
出处
《化工进展》
EI
CAS
CSCD
北大核心
2016年第10期3072-3077,共6页
Chemical Industry and Engineering Progress
关键词
炼厂气
能效比
分离
回收
数学模拟
refinery gas
energy efficiency ratio
separation
recovery
simulation