期刊文献+

专家识别推荐模块技术框架研究 被引量:4

Expert Recommendation Framework for National Science and Technology Information System
下载PDF
导出
摘要 在调研国内外专家识别推荐研究和我国主要专家库的基础上,从专家匹配、抽取规则、专家回避、专家评价和专家排序等5个方面总结归纳了我国现有专家识别推荐系统的主要问题。针对这些问题,考虑系统的可操作性,构建了包括基于知识信息的专家匹配子模块、基于整数线性规划的抽取规则子模块、关系量化的专家回避子模块、结合科学计量学指标与社会网络关系指标的专家评价子模块和综合考虑内容相似度、利益相关度、学术权威度等多条件约束的专家排序子模块的专家识别推荐模块技术框架。该技术框架可实现科技项目小同行评审专家自动识别推荐,得到最优的项目专家分配组合,更全面客观的专家回避处理,综合考虑多条件约束的专家遴选能更好地满足用户需求。 Based on the research of expert recommendation and the current states of the expert database of China, this paper summarized the main problems of the expert system from different perspectives such as domain expert matching, extraction rule, expert avoidance, expert evaluation and expert ranking. Taking into account the operability of the model, we built a technology framework, which contains the submodules like domain expert matching, extraction rule, expert avoidance, expert evaluation and expert ranking, to address these existing problems. With the guidance of this technology framework, we can satisfy the needs of consumers better.
作者 潘云涛 苏成 赵筱媛 王运红 程薛柯 袁军鹏 Pan Yuntao Su Cheng Zhao Xiaoyuan Wang Yunhong Cheng Xuke Yuan Junpeng(Institute of Scientific and Technical Information of China, Beijing 100038)
出处 《情报学报》 CSSCI 北大核心 2016年第9期923-931,共9页 Journal of the China Society for Scientific and Technical Information
基金 国家科技支撑计划项目(2015BAH25F01)
关键词 专家识别推荐 专家匹配 专家回避 专家评价 专家排序 expert recommendation, expert matching, expert avoidance, expert evaluation, expert ranking
  • 相关文献

参考文献24

  • 1Serdyukov P. Search for Expertise Going Beyond Direct Evidence[ D ]. University of Twente,2009. 被引量:1
  • 2Yukawa T, Kasahara K, Kato T, et al. An Expert Recommendation System Using Concept-based Relevance Discernment[ C]//Proeeedings of the 13th International Conference on Tools with Artificial Intelligence. Dallas, USA : IEEE Computer Society ,2001:257-264. 被引量:1
  • 3Choi J Y, Song H S, Kim S H, et al. MCORE: a context-sensitive recommendation system for the mobile web[J]. Expert Systems, 2007, 24(1): 32-46. 被引量:1
  • 4Yimam-Seid D, Kobsa A. Expert finding systems for organizations: problem and domain analysis and the DEMOIR approach [ J ]. Journal of Organizational Computing and Electronic Commerce, 2003, 13 ( 1 ) : 1-24. 被引量:1
  • 5Balog K, Azzopardi L, Rijke M D. A language modeling framework for expert finding[ C ]//Information Processing and Management, 2008 : 1-19. 被引量:1
  • 6Petkova D, Croft W B. Hierarchical language models for expert finding in enterprise corpora [ J ]. International Journal of Artificial Intelligence Tools ,2006:599-608. 被引量:1
  • 7Craswell N, Vries A P D, Soboroff I. Overview of the TREC-2005 Enterprise Track [ J ]. Proc of TREC,2006, 1 (6) :947-954. 被引量:1
  • 8Ferilli S, Mauro N D, Basile T M, et al. Automatic Topics Identification for Reviewer Assignment [ C ]// Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, 2006. 被引量:1
  • 9Baghdadi H S, Ranaivomalan B. An automatic topic identification algorithm[ J]. Journal of Computer Science, 2011, 7(9) : 1363-1367. 被引量:1
  • 10Guervos J J, Valdivieso P A. Conference paper assignment using a combined greedy/evolutionary algorithm [ C ]// Parallel Problem Solving from Nature-PPSN V: 8th International Conference, Birmingham UK, 2004: 602-611. 被引量:1

二级参考文献27

共引文献30

同被引文献47

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部