期刊文献+

基于自适应TV_p正则化图像恢复方法 被引量:1

Image restoration method based on adaptive TV_p regularization
下载PDF
导出
摘要 为了解决图像恢复时所引起的阶梯效应和边缘模糊问题,定义可变TV_p范数,提出一个自适应TV_p(Adaptive TV_p,ATV_p)正则恢复模型,并结合AOS数值计算方法,给出完整的ATV_p正则恢复算法,其中p可以自动区分图像中的边缘和平坦区域,自适应选择不同的数值,使得新模型在恢复的同时不仅能够自适应的对图像中目标边缘进行有效的保护,而且可以避免出现阶梯效应。实验表明,和主要的一些正则模型相比,本恢复算法对模糊图像的恢复无论在视角效果还是定量指标上都有了明显的改进。 In order to avoid the staircasing effect and edge blurring problem. A variable TVp norm was defined, and an adaptive TVp (ATVp) regularization model was proposed. Combining the AOS numerical method, a complete ATVp regularization algorithm was shown, where p can be adaptive selected according to different image areas. The characteristics make the new model preserve the edge information better and avoid the staircasing effect while image restoration. Experiments showed that compared with the existing regularization models, it improved the restoration results in both visual effects and SBR and PSNR.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期8-13,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金面上资助项目(11271381 11471339) 国家自然科学基金青年基金资助项目(61301229) 河南省教育厅资助项目(15A110020) 河南科技大学博士科研启动基金资助项目(13480032) 广州市科技计划资助项目(201607010144)
关键词 图像恢复 ATVp正则 AOS数值计算 image restoration ATV regularization AOS method
  • 相关文献

参考文献20

  • 1TIKHONOV A N, ARSENIN V Y. Solutions of ill-posed problems [ M ]. Washington DC: Winston and Sons, 1977. 被引量:1
  • 2RUDIN L, OSHER S, FATEMI E. Nonlinear total varia- tion based noise removal algorithms [ J ]. Physica D, 1992, 60(1/2/3/4): 259-268. 被引量:1
  • 3CHAMBOLLE A. An algorithm for total variation minimi- zation and applications [J]. Journal of Mathematical Im- aging and Vision, 2004, 20(1) : 89 -97. 被引量:1
  • 4BECK A, TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and deblur- ring problems [ J ]. IEEE Transactions on Image Process- ing, 2009, 18(11) : 2419 -2434. 被引量:1
  • 5WEN Y W, CHAN R H. Parameter selection for total variation based image restoration using discrepancy princi- ple [ J ]. IEEE Transactions on Image Processing, 2012, 21(4) : 1770 -1781. 被引量:1
  • 6CHO T S, ZITNICK C L, JOSHI N, et al. Image restora- tion by matching gradient distributions [ J ]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2012, 34(4) : 683 -694. 被引量:1
  • 7ALLARD W K. Total variation regularization for image denoising II, examples [ J]. SIAM J. Imaging Sciences, 2008, 1(4) : 400-417. 被引量:1
  • 8ALLARD W K. Total variation regularization for image denoising III, examples [ J]. SIAM J. Imaging Sciences, 2009, 2 (2) : 532 - 568. 被引量:1
  • 9WOHLBERG B, RODRIGUEZ P. An iteratively re-weighted norm algorithm for minimization of total variation functional [ J]. Signal Processing Letters, IEEE, 2007, 14(12) : 948 -951. 被引量:1
  • 10CHEN Q, MONTESINOS P, SUN Q S, et al. Adaptive total variation denoising based on difference curvature [J]. Image and Vision Computing, 2010, 28(3): 298 - 306. 被引量:1

二级参考文献30

  • 1BERTALMIO M, SAPIRO G BALLESTER C, et al. linage inpainting[ C ]//Siggraph 2000, Computer Graphics proceedings, K. Akeley, Ed ACM Press/ ACM SIGGRAPH/ Addison Wesley Longman, 2000:417 - 424. 被引量:1
  • 2BALLESTER C, BERTALMIO M, CASEI,LES V. Filling in by joint interpolation of vector fields and gray levels [ J ]. IEEE Trans Image Processing, 2001, 10 ( 8 ) : 1200 - 1211. 被引量:1
  • 3BERTALMIO M, BERTOZZI A L, SAPIRO G. Navier- Stokes, fluid dynamics and image and video inpainting [ J ]. IEEE Compuler Vision and Pattern Recognition (CVPR), 2001,1: 355-362. 被引量:1
  • 4WILSON A, RYO T. Inpainting with the Navier-Stokes equations [ R]. http://www, math. ucla. edu/- rrtakei/ gradProj/930project, pdf. 被引量:1
  • 5TAI X C, OSHER S, HOLM R. Image inpainting using TV-Stokes equation [ C ] // linage Processing Based on Partial Differential Equations, Springer, Heidelberg, 2006 : 3 - 22. 被引量:1
  • 6CHANT F, SHEN J. Mathematical models for local nontexture inpaintings [ J ]. SIAM J Appl Math, 2002, 62 (3) : 1019 - 1043. 被引量:1
  • 7RUDIN L, OSHER S,FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica 1), 1992, 60:259 - 268. 被引量:1
  • 8CHANT F, KANG S H, SHEN J. Euler's elastica and curvature-based inpainting [ J]. SIAM J Appl Math, 2002, 63 (2) : 564 - 592. 被引量:1
  • 9CHAN T F, SHEN J, VESE L. Variational PDE models in image processing[ J ]. Notices Am Math Soc, 2003, 50(1): 14-26. 被引量:1
  • 10CHAN T, SHEN J. Non-texture inpainting by curvaturedriven diffusions (CDD) [ J ]. J Visual Comm. Image Rep, 2001, 12(4) :436 -449. 被引量:1

共引文献8

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部