期刊文献+

线性等式约束下两种集合卡尔曼滤波的等价性 被引量:1

The Equivalence of Two Kinds of Ensemble Kalman Filter with Linear Equality Constraints
下载PDF
导出
摘要 针对含线性等式约束的非线性动力系统状态估计问题,考虑将集合卡尔曼滤波算法和估计投影方法相结合,根据不同的处理对象,提出两种不同的含线性等式状态约束的集合卡尔曼滤波算法:(1)运用估计投影方法对每个粒子进行修正之后再加权平均;(2)直接对加权平均后的状态估计向量使用估计投影方法。在约束矩阵退化为常向量,约束向量退化为常数的情况下,给出了上述两种滤波结果的等价性证明。数值模拟实例验证了这一结论。 For the problem of state estimation for nonlinear systems with linear state equality constraints,the method that combines ensemble Kalman filter with estimate projection approaches is presented. According to the different objects,there are two different algorithms of the ensemble Kalman filter with linear equality constraints:( 1) calculating weighted average after using estimate projection method to correct each particle;( 2) applying estimate projection method to calculating weighted average of the unconstrained state estimation vector. It is theoretically proved that the state estimation results of the two proposed algorithms are equivalent when the constraint matrix reduces to a constant vector,and the constraint vector reduces to a constant. Simulation results verify this conclusion.
出处 《成都信息工程大学学报》 2016年第3期285-290,共6页 Journal of Chengdu University of Information Technology
基金 国家自然科学基金资助项目(61374027) 数学地质四川省重点实验室开放基金资助项目(scsxdz2011006)
关键词 概率论与数理统计 信息融合 集合卡尔曼滤波 估计投影 非线性系统 状态估计 状态约束 probability and statistics information fusion ensemble Kalman filter estimate projection nonlinear system state estimation state constraints
  • 相关文献

参考文献19

  • 1Simon D. Optimal State Estimation [ M ]. NewYork: INC. Press, John Wiley & Sons, 2006:212-217,400-468. 被引量:1
  • 2陈金广,李洁,高新波.等式状态约束下的粒子滤波算法[J].电子科技大学学报,2011,40(4):596-601. 被引量:3
  • 3杜航原,郝燕玲,赵玉新.基于集合卡尔曼滤波的改进粒子滤波算法[J].系统工程与电子技术,2011,33(7):1653-1657. 被引量:10
  • 4Bengtsson T, BickelP,Li B. Curse-of-dimension-ality revisited : collapse of the particle filter in verylarge scale systems [ J]. IMS Collections,2008 ,(2): 316-334. 被引量:1
  • 5Snyder C, Bengtsson T, Bickel P, et al. Obsta-cles to high-dimensional particle filtering [ J ].Mon. Weather Rev.,2008,136 : 4629-4640. 被引量:1
  • 6Evensen G. Sequential data assimilation with anon-linear quasi-geostrophic model using MonteCarlo methods to forecast error statistics [ J] . Jour-nal of Geophysical research, 1994, 99 ( C5 ) : 10,143-10,162. 被引量:1
  • 7Burgers G,van Leeuwen P J,Evensen G. Analysisscheme in the ensemble Kalman Filter[ J]. Month-ly Weather Review, 1998 ,126 : 1719-1724. 被引量:1
  • 8Evensen G. The Ensemble Kalman Filter: theoret-ical formulation and practical implementation [ J ].Ocean Dynamics, 2003,53(4) .. 343-367. 被引量:1
  • 9Gillijins S,Mendoza 0 B, Chandrasekar J, et al.What is the ensemble Kalman filter and how welldoes it work [ C ]. Proceedings of the AmericanControl Conference, 2006 : 4448-4453. 被引量:1
  • 10Simon D. Kalman filtering with state constraints:asurvey of linear and nonlinear algorithms[ J]. IETControl Theory Appl. ,2010,4(8) : 1303-1318. 被引量:1

二级参考文献38

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans . on Automatic Control ,2000,45(5) :910 - 927. 被引量:1
  • 3Chen Z. Bayesian filtering: from Kalman filters to particle fil ters, and beyond]R]. Hamilton: McMaster University,2003. 被引量:1
  • 4Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002,50(2) : 174 - 188. 被引量:1
  • 5Handschin J E, Mayne D Q. Monte Carlo techniques to estiate the conditional expectation in multi-stage non linear filtering[J]. International Journal Control,1968,9(5):547-559. 被引量:1
  • 6Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo methods for Bayesian filtering [J]. Statistics and Computing, 2000,10(3) :197 - 208. 被引量:1
  • 7Merwe R V, Doucet A. The unscented particle filter[EB/OL]. [2006 - 01 - 18]. http://cslu. cse. ogi. edu/publications/ps/ UPF_CSLU_talk. 被引量:1
  • 8Evensen G. Sequential data assimilation with a nonlinear quasi geostrophie model using Monte Carlo methods to forecast error statistics[J]. Geophys,1994,99(C5):10. 143-10.162. 被引量:1
  • 9Mandel J, Beezley J D. An ensemble Kalman particle predictor corrector filter for non-gaussian data assimilation [C]//Proc. of the 9th International Conference on Computational Science, 2009:470 - 478. 被引量:1
  • 10Delft G V, Serafy G Y, Heemink A W. The ensemble particle fil- ter (EnPF) in rainfall-runoff models[J]. Stochastic Environmental Research and Risk Assessment, 2009,23 ( 8 ) :1203 - 1211. 被引量:1

共引文献10

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部