期刊文献+

复杂的时间序列Granger因果模型的参数估计

The Estimation of Parameters for a Complex Time Series Granger Causal Model
原文传递
导出
摘要 Granger因果关系是根据时间序列的联合回归方程和自回归方程的拟合精度来进行计算的,本文利用普通的最小二乘法(OLS)得出了一种复杂的Granger因果模型(EGCM)参数估计的矩阵表达,进而得到一般的Granger因果模型(GCM)参数估计的矩阵表达.最后,利用Matlab编程加以实现. Granger causality is calculated according to the estimated accuracy of the time series joint regression equation and autoregressive equation.In this paper,a complex time series Granger causal model is discussed,the least squares estimation of Parameters in matrix form has been obtained,and two corollary of Granger causal model are given.The method has been implemented by Matlab.
出处 《生物数学学报》 2016年第3期351-357,共7页 Journal of Biomathematics
基金 湖南省自然科学基金项目(13JJ3120) 湖南省教育厅项目(13C880) 湖南省科技厅项目(2012FJ4300) 湖南省重点建设学科项目 湘南学院项目(2013YJ29)
关键词 GRANGER因果关系 因果模型 最小二乘法 参数估计 Granger Causality Causal Model Ordinary Least Square Parameter Estimation
  • 相关文献

参考文献12

  • 1Granger C W J.Investigating causal relations by econometric models and cross-spectral methods[J].Econometrica,1969,37(3):424-438. 被引量:1
  • 2Roderick McCrorie J,Marcus J.Chambers.Granger causality and the sampling of economic processes[J].Journal of Econometrics,2006,132(2):311-336. 被引量:1
  • 3朱宏泉,卢祖帝,汪寿阳.中国股市的Granger因果关系分析[J].管理科学学报,2001,4(5):7-12. 被引量:67
  • 4Hesse W,Moler E,Arnold M,et al.The use of timevariant EEG Granger causality for inspecting directed interdependencies of neural assemblies[J].J.Neurosci.Methods,2003,124(1):27-44. 被引量:1
  • 5Gow D W,Segawa J A,Alfhors S,et al.Lexical influences on speech perception:A Granger causality analysis of MEG and EEG source estimates[J].Neuroimage,2008,43(3):614-623. 被引量:1
  • 6焦青,钟元,郭永新,张志强,廖伟,田蕾,陈至立,刘一军,卢光明.基于Granger因果性的功能磁共振成像对内侧颞叶癫痫活动的研究[J].中国生物医学工程学报,2009,28(1):7-11. 被引量:4
  • 7Zhenyu Zhou,Xunheng Wang,Nelson J,et al.A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging[J].Magnetic Resonance Imaging,2011,29(3):418-433. 被引量:1
  • 8Guo S,Wu J,Ding M,et al.Uncovering interactions in the frequency domain[J].PLoS Comput.Biol.,2008,4(5):e1000087-1-e1000087-5. 被引量:1
  • 9Wiener N.The theory of prediction[A],E.F.Beckenbach,Ed.,in mordern Mathematics for Engineers[C],New York:McGraw-Hill,1956. 被引量:1
  • 10Ding M,Chen Y,Bressler S L.Granger causality:Basic theory and applications to neuroscience[A],B.Schelter,M.Winterhalder,and J.Timmer,Eds.,in Handbook of Time Series Analysis[C],Weinheim,Germany:Wiley-VCH,2006,437-460. 被引量:1

二级参考文献33

  • 1Dan CM, Krista LG. Mapping seizure pathways in the temporal lobe [J]. Epilepsia, 2008, 49(Suppl. 3) : 23 - 30. 被引量:1
  • 2Wieser HG. Selective amygalo-hippocampectomy: indications and follow-up [J]. Can J Neurol, 1991, 18: 617-627. 被引量:1
  • 3Woo ST, Eun YJ, Jee HK, et al. Cerebral perfusion changes in mesial temporal lobe epilepsy: SPM analysis of ictal and interictal SPECT [J]. Neurolmage, 2005, 24:101 - 110. 被引量:1
  • 4Nelissen N, Paesschen WV, Baete K, et al. Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis [ J ]. Neurolmage, 2006, 32: 684-695. 被引量:1
  • 5Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis [J]. Hum Brain Mapp, 1994, 2: 56-78. 被引量:1
  • 6Buchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI [J]. Cereb Cortex, 1997, 7: 768- 778. 被引量:1
  • 7Friston K J, Buchel C. Attentional modulation of effective connectivity from V2 to V5/MT in humans [J]. Proc Natl Acad Sci USA, 2000, 97: 7591- 7596. 被引量:1
  • 8Marreiros AC, Kiebel SJ, Friston KJ. Dynamic causal modelling for fMRI: a two-state model [J]. Neuroimage, 2008, 39( 1):269- 278. 被引量:1
  • 9Wang Xue, Chen Yonghong, Bressler SL, et al. Granger causality between multiple interdependent neurobiologlcal time series : blockwise versus parlwise methods [ J]. International Journal of Neural Systems, 2007, 17(2) : 71 - 78. 被引量:1
  • 10Guo Shuixia, Seth AK, Kendriek KM, et al. Partial Granger causality-Eliminating exogenous inputs and latent variables [ J ]. Journal of Neuroscience Methods, 2008, 172 : 79 - 93. 被引量:1

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部