期刊文献+

基于CUDA的SMAC算法并行化

SMAC algorithm parallelization based on CUDA
下载PDF
导出
摘要 改进SMAC(Simplified Marker and Cell)算法,增强其对流体模拟的实时处理能力。采用点差分格式对求解压力场和速度更新的偏微分方程进行离散化;引入消除数据相关性的存储算法以减少数据传输,并借助分层存储机制提高访存比,采用并行归约增加线程并行度;在统一计算设备架构平台下,对离散化的SMAC算法进行改进、优化及并行化实现。纯粹计算及多次迭代模拟实验结果显示,改进算法提速明显,可实现对一般场景的实时模拟。 SMAC (Simplified Marker and Cell) algorithm is improved in order to enhance the ability of real time processing for fluid simulation. The algorithm is discretized for solving pressure field and update speed used by central difference scheme. A data storage algorithm that can eliminate data correlation is proposed to reduce data transmission. Usage of memory is optimized based on CUDA and the parallel computing threads into appropriate blocks is organized to make better use of stream multiprocessor in GPU. The discretization of the SMAC algorithm is improved, optimized and parallel implemented under the CUDA (unified computing device architecture) platform. Result show that GPU-based implementation of SMAC can achieve a significant speedup compared with CPU based counterpart both in the SMAC algorithm and in real simulation. Therefore the improved algorithm can achieve real-time simulation of the general scene.
作者 常立博 杜慧敏 韩俊刚 CHANG Libo DU Huimin HAN Jungang(School of Electronic Engineering, XFan University of Posts and Telecommunications, Xi'an 710121, China School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an 710121, China)
出处 《西安邮电大学学报》 2016年第5期33-38,共6页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61136002) 西安市科技发展计划资助项目(CXY1440(10))
关键词 计算流体力学 统一计算设备架构 并行算法 computational fluid dynamics, compute unified device architecture, parallel algorithm
  • 相关文献

参考文献13

  • 1佟志忠,姜洪洲,韩俊伟.GPU加速的二维流体实时流动仿真[J].哈尔滨工程大学学报,2008,29(3):278-284. 被引量:5
  • 2STAM J.Stable fluids[J/OL].Acm Transactions on Graphics,1999:121-128[2015-12-20].http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf. 被引量:1
  • 3AMSDEN A A,HARLOW F H.A Simplified MAC Technique for Incompressible Fluid Flow Calculations Physics[J/OL].Journal of Computational,1970,6(2):322-325[2015-12-20].http://dx.doi.org/10.1016/0021-9991(70)90029-X. 被引量:1
  • 4张永学,曹树良,祝宝山.求解不可压三维湍流的隐式SMAC方法[J].清华大学学报(自然科学版),2005,45(11):1561-1564. 被引量:2
  • 5SCHEIDEGGER C E,COMBA J L D,Da C R D.Practical CFD Simulations on Programmable Graphics Hardware using SMAC[J/OL].Computer Graphics Forum,2005,24(24):715-728[2015-12-30].http://dx.doi.org/10.1111/j.1467-8659.2005.00897.x. 被引量:1
  • 6CHORIN A J.Numerical Solution of the NavierStokes Equations*[J/OL].Mathematics of Computation,1968,22(104):17-34[2016-1-1].http://dx.doi.org/10.1016/B978-0-12-174070-2.50005-8. 被引量:1
  • 7LAX P D,HERSH R,JELTSCHR,et al.The Courant-Friedrichs-Lewy(CFL)Condition[J/OL].Communications on Pure&Applied Mathematics,1962,15(4):363-371[2016-1-1].http://link.springer.com/978-0-8176-8394-8.DOI:10.1007/978-0-8176-8394-8. 被引量:1
  • 8KIRK D B.Programming Massively Parallel Processors[M/OL].北京:清华大学出版社,2010:24-46[2016-1-10].http://www.doc88.com/p-2939593408781.html. 被引量:1
  • 9COOK S.CUDA Programming:A Developer’s Guide to Parallel Computing with GPUs[M/OL].Morgan Kaufmann Publishers Inc.,2012:155[2016-1-10].http://download.csdn.net/detail/niexiao2008/5780159. 被引量:1
  • 10HIRSCH C.Numerical computation of internal and external flows[M/OL].Butterworth-Heinemann,2007:491-539[2016-1-10].http://dx.doi.org/10.1016/B978-075066594-0/50053-9. 被引量:1

二级参考文献32

  • 1柳有权,刘学慧,吴恩华.基于GPU带有复杂边界的三维实时流体模拟[J].软件学报,2006,17(3):568-576. 被引量:54
  • 2Harlow F H, Welch J E. Numerical calculation of time dependent viscous incompressible flow of fluid with free surface [J]. Phys Fluids, 1965, 8(12):2182-2189. 被引量:1
  • 3Amsden A A, Harlow F H. A simplified MAC technique for incompressible fluid flow calculations [J]. J Comp Phys, 1970, 6(2):322-325. 被引量:1
  • 4Ikohagi T, Shin B R. Finite-difference schemes for steady incompressible Navier-Stokes equations in general curvilinear coordinates [J]. Comput & Fliuds, 1991, 19(3):479-486. 被引量:1
  • 5Leonard B P. A survey of finite-differences with upwinding for numerical modeling of the incompressible convective diffusion equations [J]. Comput Tech in Trans and Turbu Flows, 1981, 2:1-35. 被引量:1
  • 6Woznicki Z I, Jedrzejec H A. A new class of modified line-SOR algorithms [J]. J Compul and Appl Math, 2001, 131(1-2):89-142. 被引量:1
  • 7Chieng C C, Launder B E. On the calculation of turbulent heat transport downstream from an abrupt pipe expansion [J]. Number Heat Transfer, 1980, 3:189-207. 被引量:1
  • 8Armaly B F, Durst F, Pereira J C F, et al. Experimental and theoretical investigation of backward-facing step flow [J]. J Fluid Mech, 1983, 127:473-496. 被引量:1
  • 9Kondoh T, Nagano Y, Tsaji T. Computational study on laminar heat transfer downstream of a backward-facing step [J]. Int J Heat Mass Transfer, 1993, 36(3):577-591. 被引量:1
  • 10KAJIYA J T, Von HERZEN B P. Ray tracing volume densities [J]. Computer Graphics, 1984, 18 (3): 165- 174. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部