摘要
为了快速将分层设色图件中象元的颜色值转化为具有实际意义的属性标识或物理、化学参数值,从而提取分层设色图件中包含的数据,作者提出了根据不同颜色分量(RGB)构建颜色特征空间,基于最小距离监督分类方法快速提取分层设色图件中数据的方法。使用该方法对东半球海域海面水汽分布数据进行提取,取得了良好的效果。该方法可以广泛应用于物理海洋、环境科学、地质调查、地理信息系统建库等多个行业领域的数据提取工作中。
In this article, a new method was designed to convert the RGB value of pixels in the hypsometric law-based map to its real property code, to convert it quickly to its physical/chemical parameters, and to extract spatial data from the hypsometric law-based map. The minimum distance supervised classification method was used to construct the feature class space based on the RGB component of the map image. This method also provided a good result when extracting water vapor concentration data in the Eastern Hemisphere and can thus be used widely in data extraction work in fields such as physical oceanology, environmental science, geological surveying, and GIS database construction.
出处
《海洋科学》
CAS
CSCD
北大核心
2016年第7期110-114,共5页
Marine Sciences
基金
国家自然科学基金项目(41006021,41306190)
山东省自然科学基金项目(ZR2014DQ005)
泰山学者工程专项经费资助~~
关键词
监督分类
数据提取
分层设色法
ENVI
Supervised classification method
data extraction
hypsometric law-based map
ENVI