期刊文献+

基于改进遗传算法的云计算任务调度算法 被引量:9

A Task Scheduling Algorithm Based on Improved Genetic Algorithm in Cloud Computing Environment
下载PDF
导出
摘要 任务调度是云计算的核心问题。云计算中的任务调度算法要求在提高系统吞吐量和最大跨度的同时又要兼顾资源的安全与负载均衡问题。传统遗传算法因具有强大的并行空间搜索能力而在云计算中得到广泛应用,但其亦存在明显不足,即随着计算机规模的不断扩大,收敛性逐渐降低,存在易早熟等不足,限制了其调度性能。而Min-Min和Max-Min算法简单易行,且具有较好的时间跨度,可以较好地弥补传统算法的不足。在传统遗传算法的基础上,结合Min-Min和Max-Min算法,提出了一种新的云计算任务调度算法,在产生初始化种群时引入Min-Min和Max-Min算法,并选取任务完成时间和负载均衡作为双适应度函数,提高了初始化种群的质量、算法搜索能力以及收敛速度。仿真结果表明,该算法优于传统遗传算法,是一种有效的云计算任务调度算法。 Task scheduling mechanism is one of the core issues in cloud computing. The task scheduling algorithm in cloud computing re- quires improvement of the system throughput and the largest span while considering resources security and load balancing problems. As a classical task scheduling algorithm with powerful and implicit parallel space search capability, genetic algorithm is widely usexl in cloud computing. However, it has many deficiencies, such as slow convergence and premature with the increasing calculation scale. Min-Min algorithm and Max-Min algorithm are simple and practicable with better makespan, which can well make up the deficiencies of traditional genetic algorithm. On this basis, an improved algorithm is put forward, which introduces Min-Min algorithm and Max-Min algorithm in the process of population initialization, and uses the minimizing makespan and the load balancing of resource as double-fitness function meanwhile. The simulation shows that this algorithm can elevate the quality of initial population, the search capability and the convergence rate, which is more efficient.
出处 《计算机技术与发展》 2016年第10期137-141,共5页 Computer Technology and Development
基金 广西壮族自治区自然科学基金项目(2013GXNSFAA019347) 广西科技大学鹿山学院科学基金项目(2015LSKY05)
关键词 云计算 遗传算法 任务调度 Min—Min算法 Max—Min算法 cloud computing genetic algorithm task scheduling Min-Min algorithm Max-Min algorithm
  • 相关文献

参考文献14

  • 1Chien A, Calder B, Elbert S, et al. Entropia : architecture and performance of an enterprise desktop grid system [ J ]. Journal of Parallel and Distributed Computing, 2003, 63 (5) : 597-610. 被引量:1
  • 2Kim J S, Nam B, Marsh M, et al. Creating a rebustdesktop grid using peer - to - peerservices [ EB/OL ]. [ 2009 - 10 - 16 ]. ftp ://ftp. cs. umd. edu/puh/hpsVpaporg/papers -pdf/ngs07. pdf. 被引量:1
  • 3Armbrust M, Fox A, Gfit~th R, et al. A view of cloud compu- ting[ J ]. Communications of the ACM ,2009,53 (4) :50-58. 被引量:1
  • 4Carretcro J, Xhafa F. Use genetic algorithms for scheduling jobs in large scale grid applications [ J ]. Technologies and E- conomic Development of Economy ,2006,12 ( 1 ) : 11 - 17. 被引量:1
  • 5Buyya R, Ranjan R, Calheires R N. Modeling and simulation of scalable cloud computing environments and the CloudSim Toolkit: challenges and opportunities [ C ]//Proceedings of the seventh high performance computing and simulation confer- ence. New York, USA: IEEE Press,2009:21-24. 被引量:1
  • 6Dean J, Ghemawat S. MapReduce: simplifiod data processing on large clusters [ C ]//Proceedings of the 6th symposium on operating system design and implementation. New York:ACM, 2004:137-150. 被引量:1
  • 7王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2002.. 被引量:107
  • 8李建锋,彭舰.云计算环境下基于改进遗传算法的任务调度算法[J].计算机应用,2011,31(1):184-186. 被引量:203
  • 9朱宗斌,杜中军.基于改进GA的云计算任务调度算法[J].计算机工程与应用,2013,49(5):77-80. 被引量:32
  • 10叶春晓,陆杰.基于改进遗传算法的网格任务调度研究[J].计算机科学,2010,37(7):233-235. 被引量:10

二级参考文献58

共引文献371

同被引文献70

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部