期刊文献+

LNP模型中的神经元滤波特征提取 被引量:1

Neuron-filtering feature extraction based on LNP model
原文传递
导出
摘要 目的 LNP(linear-nonlinear-Poisson)模型很好地解译了神经元的响应过程,其重要环节之一是线性滤波器的提取。针对传统i STAC(information-theoretic spike-triggered average and covariance)算法运用于LNP模型时的神经元特性表征不足、运动特征提取效果不佳等问题,特别是在处理低维度刺激问题时,提出了一种改进的i STAC神经元滤波特征提取算法。方法引入非触发刺激的统计量,从而更加准确地构建神经元滤波特征子空间的目标函数,同时增强系统的抗噪能力;采用变尺度法最大化目标函数,从而优化解空间,提升算法的收敛速率。结果不同非线性条件下对线性滤波器的恢复实验结果表明,新算法相较于传统i STAC算法在高维度刺激时保持较好的表征特性,在刺激维度小于6 500时有明显改善,且总体上优于STA(spike-triggered average)和STC(spike-triggered covariance)算法。结论提出的新算法适用范围更广,鲁棒性更强,能够运用于建立完整的基于视觉特性的视频运动特征提取模型。 Objective Linear-nonlinear-Poisson (LPN) model provides a good interpretation of neuron response, and one of its important links is linear feature extraction. Focusing on the issue that traditional information-theoretic Spike-Triggered average and covariance (iSTAC) algorithm cannot exactly describe neuron feature and extract its motion characteristics, es- pecially in low-dimension stimulus, this study improves the iSTAC algorithm and proposes a new algorithm for neuron-filte- ring feature extraction. Method Statistics of non-spike-triggered stimulus are introduced to build a highly accurate objective function of neuron-filtering feature subspace and to enhance noise resistance of the system. To optimize solution space and to accelerate convergence rate, a variable metric method is accepted to maximize the object function. Result Experimental results of linear filter recovery under different nonlinear conditions show that the new algorithm is similar to the traditional iSTAC algorithm in high-dimension stimulus and has achieved significant progress in less than 6 500 dimension stimuli. Furthermore, results show that the new algorithm is better than the spike-triggered average (STA) and spike-triggered co- variance (STC) algorithms. Conclusion The proposed new algorithm has better adaptability and greater robustness, and can be applied to establish a complete extraction model of video motion feature based on visual features.
出处 《中国图象图形学报》 CSCD 北大核心 2016年第10期1376-1382,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(61372167 61379104)~~
关键词 LNP模型 iSTAC算法 低维度 滤波特征提取 非触发刺激 变尺度法 LNP model iSTAC algorithm low dimension filtering feature extraction non-spike-triggered stimulus vari-able metric method
  • 相关文献

参考文献16

  • 1Hovy E, Navigli R, Ponzetto S P. Collaboratively built semi- structured content and Artificial Intelligence: the story so far[ J ]. Artificial Intelligence, 2013, 194: 2-27. 被引量:1
  • 2Kasabov N K. Integrative computational neurogenetic modeling [J]. Brain Mapping, 2015, 1: 667-674. 被引量:1
  • 3钱乐乐,高隽,谢昭.一种融合神经稀疏编码机制的层次目标识别算法[J].中国图象图形学报,2010,15(10):1521-1529. 被引量:2
  • 4Schwartz O, Pillow J W, Rust N C, et al. Spike-triggered neural characterization[ J ]. Journal of Vision, 2006, 6 ( 4 ) : 484-507. 被引量:1
  • 5Sharpee T O, Sugihara H, Kurgansky A V, et al. Adaptive filte- ring enhances information transmission in visual cortex [ J ]. Na- ture, 2006, 439 ( 7079 ) : 936-942. 被引量:1
  • 6Pillow J W, Simoncelli E P. Dimensionality reduction in neural models : An information-theoretic generalization of spike-triggered average and covariance analysis [ J ]. Journal of Vision, 2006, 6(4) : 414-428. 被引量:1
  • 7Rasch M J, Chen M, Wu S, et al. Quantitative inference of pop- ulation response properties across eccentricity from motion-in- duced maps in macaque VI [ J ]. Journal of Neurophysiology, 2013, 109(5): 1233-1249. 被引量:1
  • 8Haefner R M, Cumming B G. Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model[ J]. Neuron, 2008, 57 ( 1 ) : 147-158. 被引量:1
  • 9Simoneelli E P, Paninski L, Pillow J, et al. Characterization of neural responses with stochastic stimuli [ M ]//Gazzaniga M S. The Cognitive Neuroseienees. 3rd ed. Cambridge, MD: MIT Press, 2004: 327-338. 被引量:1
  • 10蒋建国,郭艳蓉,郝世杰,詹曙,李鸿,Ian Ross.贝叶斯框架下的非参数估计Graph Cuts分割算法[J].中国图象图形学报,2011,16(6):947-952. 被引量:7

二级参考文献26

  • 1吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京:北京大学出版社,2008. 被引量:21
  • 2Hubel D H, Wiesel T N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat [J]. Journal of Neurophysiology, 1965, 28(2) : 229-289. 被引量:1
  • 3Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position [J]. Biological Cybernetics, 1980, 36(4): 193-202. 被引量:1
  • 4Perrett D, Oram M. Neurophysiology of shape processing [ J]. Image and Vision Computation, 1993, 11 (6) : 317-333. 被引量:1
  • 5Poggio T, Edelman S. A network that learns to recognize 3D objects [J]. Nature, 1990, 343(6255):263-266. 被引量:1
  • 6Riesenhuber M, Poggio T. Are cortical models really bound by the "binding problem" [ J]. Neuron, 1999a, 24( 1 ) : 87-93. 被引量:1
  • 7LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [ J ]. Proceedings of the IEEE, 1998, 86(11) : 2278-2324. 被引量:1
  • 8Wallis G, Rolls E T. A model of invariant object recognition in the visual system [J]. Progress in Neurobiology, 1997, 51 : 167-194. 被引量:1
  • 9Foldiok P. Learning invariance from transformation sequences [J]. Neural Computation, 1991, 3(2): 194-200. 被引量:1
  • 10Olshausen B A, Field David J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381: 607-609. 被引量:1

共引文献7

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部