期刊文献+

非下采样四元数剪切波变换域的图像融合 被引量:4

Image fusion based on non-subsampled quaternion shearlet transform
原文传递
导出
摘要 目的由于一些光学镜头聚焦范围的有限性,很难对同一场景中所有物体都清晰地成像在一幅图像中,而将同一场景中的多幅源图像进行融合可以得到一幅全景更加清晰的图像,为了增强融合图像的质量,提出了一种新的非下采样四元数剪切波变换(NSQST)的图像融合算法。方法首先将源图像经过NSQST分解得到低频子带系数和高频子带系数;其次,对低频子带,提出了一种改进的稀疏表示(ISR)的融合规则;对于高频子带,提出一种改进的空间频率、边缘能量和局部区域相似匹配度相结合的融合规则;最后通过NSQST逆变换得到融合图像。结果与其他5种融合方法进行对比,本文方法获得了较好的客观指标和视觉效果,其中与NSCT-SR算法相比,本文方法获得的4个客观指标分别提高了3.6%、2.9%、1.5%、5.2%,3.7%、3.2%、3.2%、3.0%和6.2%、3.8%、3.4%、8.6%。结论通过多聚焦图像进行融合实验,实验结果表明该方法可进一步应用于目标识别、医学诊断等领域。 Objective Obtaining an image that contains all objects in focus is difficult because of limited depth of focus of optical lenses. Image fusion target aims to generate a sharper image by integrating complementary information from multiple source images of the same scene. To improve fused-image quality, a novel algorithm based on non-subsampled quaternion shearlet transform (NSQST) is proposed in this paper. Method First, source images are decomposed by NSQST to obtain low- and high-frequency sub-band coefficients. For low-frequency sub-band coefficients, improved sparse representation- based fusion rule is presented; then, for high-frequency sub-band coefficients, a scheme that combines new, improved spa- tial frequency, edge energy, and local similarity-matched degree is presented. Finally, a fused image is obtained by per- forming inverse NSQST. Result The proposed method can obtain better visual effects and objective evaluation criteria com- pared with other five fusion methods. Fusion quality indexes have increased by 3.6% , 2. 9% , 1.5% , 5.2% , 3.7% , 3.2% , 3. 2% , 3.0% , 6. 2% , 3.8% , 3.4% , and 8. 6% compared with the result of the NSCT-SR method. Conclusion A multi-focus image is used in our experiment, and experimental results show that this method can be further applied in tar- get recognition, medical diagnosis, and other fields.
出处 《中国图象图形学报》 CSCD 北大核心 2016年第10期1289-1297,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(11172086) 安徽省自然科学基金项目(1308085MA09) 安徽省教育厅自然科学研究重点基金项目(KJ2013A216)~~
关键词 非下采样四元数剪切波变换 多聚焦图像融合 稀疏表示 改进的空间频率 non-subsampled quaternion shearlet transform multi-focus image fusion sparse representation improved spa-tial frequency
  • 相关文献

参考文献22

  • 1Huang W, Jing Z L. Evaluation of focus measures in multi-focus image fusion[J]. Pattern Recognition Letters, 2007, 28 (4) : 493-500. 被引量:1
  • 2李伟,朱学峰.基于第二代小波变换的图像融合方法及性能评价[J].自动化学报,2007,33(8):817-822. 被引量:23
  • 3Wang H H. A new multiwavelet-based approach to image fusion [ J ]. Journal of Mathematical Imaging and Vision, 2004,21(2): 177-192. 被引量:1
  • 4Do M N, Vetterli M. The contourlet transform: an efficient direc- tional multiresolution image representation [ J ]. IEEE Transac- tions on Image Processing, 2005, 14(12) : 2091-2106. 被引量:1
  • 5Da Cunha A L, Zhou J P, Do M N. The nonsubsampled contour- let transform : theory, design, and applications[ J]. IEEE Trans- actions on Image Processing, 2006, 15 (10): 3089-3101. 被引量:1
  • 6Yang B, Li S T, Sun F M. Image fusion using nonsubsampled contourlet transform [ C ]//Proceeding of the 4th International Conference on Image and Graphics. Chengdu, China: IEEE, 2007 : 719-724. 被引量:1
  • 7Easley G, Labate D, Lira W Q. Sparse directional image repre- sentations using the discrete shearlet transform [ J ]. Applied and Computational Harmonic Analysis, 2005, 25 (1): 25-46. 被引量:1
  • 8刘卫,殷明,栾静,郭宇.基于平移不变剪切波变换域图像融合算法[J].光子学报,2013,42(4):496-503. 被引量:22
  • 9Bayro-Corrochano E. The theory and use of the quatemion wave- let transform[J]. Journal of Mathematical Imaging and Vision, 2006, 24( 1 ) : 19-35. 被引量:1
  • 10Yang B, Li S T. Multifocus image fusion and restoration with sparse representation [ J ]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4) : 884-892. 被引量:1

二级参考文献26

共引文献156

同被引文献15

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部