期刊文献+

一种基于神经网络的SQL注入漏洞的检测模型 被引量:8

SQL Injection Detection Based on Neural Network
下载PDF
导出
摘要 针对SQL注入漏洞检测问题,本文提出一种基于人工神经元网络的SQL注入漏洞的分析模型。该模型在识别SQL关键字注入攻击特点的基础上,利用人工神经元网络算法对SQL注入语句进行检测,能够直接分析SQL语句,判断用户输入的SQL语句是否为SQL注入的语句。实现上,通过在Web应用程序和数据库中间加一个代理来实现分析和检测过程,从而无需修改已有应用的代码。通过对实验结果的分析证明该模型可提高SQL注入漏洞检测的准确率和执行效率。 A novel approach to detect injection attacks was presented by identifying characteristics of injection attacks and using a neural network model to determine the likelihood that a given query is malicious. Based on the recognition of SQL character injec- tion attack, the analysis model comes into being used to determine whether to inject SQL statements of model by using a large number of known data and the neural network algorithm. After that, based on the neural network model presented, the user input SQL statement can be directly analyzed and processed. This approach is implemented in a proxy that locates between a Web ap- plication and a database and prevents suspected malicious queries from being executed. This requires no modification of existing application code and is capable of identifying un-known attacks. Experimental results show that the model can effectively improve the accuracy and efficiency of the detection.
出处 《计算机与现代化》 2016年第10期67-71,共5页 Computer and Modernization
关键词 SQL漏洞 注入 WEB应用程序 神经元网络 SQL injection malicious query Web application neural network
  • 相关文献

参考文献15

  • 1OWASP. OWASP Topl0-2010[EB/OL]. http://wenku. baidu, com/view/353d22c75fbfc77da269bldl, html, 2016-03- 31. 被引量:1
  • 2Su Zhendong, Wassermann G. The essence of command injection attacks in Web applications[ C]//Proceedings of Conference of the 33rd ACM SIGPLAN-SIGACT Symposi- um on Principles of Programing Languages ( POPL' 06 ). 2006 : 372-382. 被引量:1
  • 3Wassermann G, Su Zhendong. Sound and precise analysis of Web applications for injection vulnerabilities [ C ]// 2007 ACM SIGPLAN Conference on Programming Language De- sign and Implementation (PLDI' 07). 2007:32-41. 被引量:1
  • 4Jiao Antunes, Nuno Neves, Migue Correia, et al. Vulnera- bihty discovery with attack injection [ J ]. IEEE Transac- tions on Software Engineering, 201 O, 36 (3) : 357-370. 被引量:1
  • 5Halfond W G J, Viegas H J, Orso A. A classification of SQL injection attacks and countermeasures [ C ]// Proc. of International Symposium on Secure Software Engineering. IEEE Press, 2006. 被引量:1
  • 6Buehrer G T, Weide B W, Sivilotti P A G. Using parse tree validation to prevent SQL injection attacks[ C]//Pro- ceedings of the 5th International Workshop on Software En- gineering and Middleware ( SEM' 05 ). 2005 : 106-113. 被引量:1
  • 7Angelo Ciampa, Corrado Aaron Visaggio, Massimiliano Di Penta. A heuristic-based approach for detecting SQL-injee- tion vulnerabilities in Web applications ~ C ]//Proceedings of the IEEE 2010 ICSE Workshop on Software Engineering for Secure Systems ( ICSE' 10). 2010:43-49. 被引量:1
  • 8Ismail O, Etoh M, Kadobayashi Y, et al. A proposal andimplementation of automatic detection/collection system for cross-site scripting vulnerability [ C ~// Proceedings of the International Conference on Advanced Information Networ- king and Applications ( AINA' 04 ). 2004 : 145-151. 被引量:1
  • 9Daniel Bates, Adams Barths, Collin Jackson. Regular ex- pression considered harmful in client-side XSS filter[ C l// Proceedings of the 19th International World Wide Web Conference(WWW' 10). 2010:91-100. 被引量:1
  • 10Alkhalaf Muath, Choudhary Shauvik Roy, Fazziniy Mattia, et al. ViewPoints: Differential string analysis for discove- ring client and server-side input validation inconsistencies [C l// Proceedings of the 2012 International Symposium on Software Testing and Analysis (ISSTA' 12). 2012:56- 66. 被引量:1

共引文献3

同被引文献40

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部