期刊文献+

基于机器视觉的牛肉结缔组织特征和嫩度关系研究 被引量:12

Research on relationship between beef connective tissue features and tenderness by computer vision technology
下载PDF
导出
摘要 [目的]嫩度是肉品质量的首要指标,其影响牛肉的消费和商业价值;寻找合适的嫩度指标,快速、无损、客观地预测牛肉嫩度一直是肉品学研究的热点之一。[方法]本文基于机器视觉技术和图像处理方法,分割牛肉图像的肌间结缔组织区域,提取肌间结缔组织的特征参数,运用统计学方法关联该特征参数和熟肉剪切力值,结合经过专门训练的评级小组的分级,采用Stepwise多元线性回归(Stepwise-MLR)建模,对牛肉嫩度进行预测和分级。[结果]70个样本图像的结缔组织特征数据全部用于训练模型,采用留一法交叉验证(Leave-one-out cross validation)测试模型,验证模型的牛肉嫩度判别系数(R^2)为0.857,剩余标准误差(residual standard error,RSEC)为6.453;将牛肉分为嫩、中等、老3个等级,全部预测集的总体等级预测正确率为88.57%。[结论]肌间结缔组织特征是预测牛肉嫩度的重要指标,本文所用的软硬件方法对牛肉嫩度的快速、无损、客观预测和分级具有一定的实用价值及指导意义。 [Objectives]Tenderness is the primary indicator of the meat quality. It influences the consumption and commercial value of the beef. Looking for suitable indicators of tenderness and predicting the tenderness with a rapid,non-destructive,and objective method has always been one of research focuses. [Methods]In this paper,the area of connective tissue between the muscles was segmented based on computer vision technology and image processing methods to extract features. Then statistical methods were used to find the relationship between characteristic parameters and cooked-beef shear force value. And combining with rating by a trained panel,the beef tenderness model was established by Stepwise-multiple linear regressions to predict cooked-beef tenderness and grading. [Results]The connective tissue feature data for 70 sample images were used to train and test sample tenderness model in a rotational leave-one-out scheme. Beef tenderness discrimination coefficient of the model R^2 was 0.857,and RSEC was 6.453. Through cross validation,the beef was classified into tender,medium and tough groups with 88. 57% classification accuracy. [Conclusions]Experimental results showed that image features of connective tissue between muscles were important indicators of beef tenderness.The hardware and software which was able to predict beef tenderness levels quickly and non-destructively had good practical value and guiding significance.
出处 《南京农业大学学报》 CAS CSCD 北大核心 2016年第5期865-871,共7页 Journal of Nanjing Agricultural University
基金 国家现代农业(肉牛)产业技术体系项目(nycytx-38) 农业科技成果转化资金项目(SQ2011ECC100043) 国家自然科学基金项目(61503187)
关键词 牛肉嫩度 结缔组织 机器视觉 图像处理 Stepwise多元线性回归 留一法交叉验证 beef tenderness connective tissue computer vision image processing Stepwise-multiple linear regressions(Stepwise-MLR) Leave-one-out cross validation
  • 相关文献

参考文献24

  • 1Verbeke W,Wezemael L V,de Barcellos M D,et al. European beef consumers’ interest in a beef eating-quality guarantee:insights from a qualitative study in four EU countries[J]. Appetite,2010,54(2):289-296. 被引量:1
  • 2Banovi Dc’ M,Grunert K G,Barreira M M,et al. Beef quality perception at the point of purchase:a study from Portugal[J]. Food Quality and Preference,2009,20(4):335-342. 被引量:1
  • 3Robbins K,Jensen J,Ryan K J,et al. Consumer attitudes towards beef and acceptability of enhanced beef[J]. Meat Science,2003,65:721-729. 被引量:1
  • 4van Wezemael L,de Smet S,Ueland ?,et al. Relationships between sensory evaluations of beef tenderness,shear force measurements and consumer characteristics[J]. Meat Science,2014,97:310-315. 被引量:1
  • 5Grunert K G,Verbeke W,Kügler J O,et al. Use of consumer insight in the new product development process in the meat sector[J]. Meat Science,2011,89:251-258. 被引量:1
  • 6Rodas-González A,Huerta-Leidenz N,Jerez-Timaure N,et al. Establishing tenderness thresholds of Venezuelan beef steaks using consumer and trained sensory panels[J]. Meat Science,2009,83:218-223. 被引量:1
  • 7Jackman P,Sun D W,Allen P. Recent advances in the use of computer vision technology in the quality assessment of fresh meats[J]. Trends in Food Science & Technology,2011,22:185-197. 被引量:1
  • 8McDonald T P,Chen Y R. Visual characterization of marbling in beef ribeyes and its relationship to taste parameters[J]. Trans ASAE,1991,34(6):2499-2504. 被引量:1
  • 9Wulf D M,Connor S F O’,Tatum J D,et al. Using objective measures of muscle color to predict beef longissimus tenderness[J]. Journal of Animal Science,1997,75:684-692. 被引量:1
  • 10Li J,Tan J,Shatadal P. Classification of tough and tender beef by image texture analysis[J]. Meat Science,2001,57:341-346. 被引量:1

二级参考文献10

  • 1LUWan-zhen YUANHong-fu XUGuang-tongetal(陆婉珍 袁洪福 徐广通).Modem NIR Spectroscopic Analysis Techniques(现代近红外光谱分析技术)[M].Beijing:Chinese PetrochemicalIndustry Press(北京:,2000,6.. 被引量:1
  • 2ZHOU Guang-hong(周光宏). Meat Science(肉品学). Beijing: China Agriculture Press(北京:农业出版社), 1999. 被引量:2
  • 3Naes Tormod, Hildrum Kjell Ivar. Applied Spectroscopy, 1997, 51(3): 350. 被引量:1
  • 4Park B, Chen Y R, Hruschka W R, et al. American Society of Animal Science, 1998, 76: 2115. 被引量:1
  • 5Park Bosoon, Chert Yud-Ren Hruschka William R, et al. Assessment of Beef Tenderness Using Near-Infrared Spectroscopy. Proceedings of the 1997 ASAAE Annual International Meeting. Part 3. Aug 1-14, 1997. Minneapolis, USA, 1997. 被引量:1
  • 6Park B, Chen Y R, Hruschka W R, et al. Transactions of the American Society of Agricultural Engineers, 2001, 44(3): 609. 被引量:1
  • 7Byme C E, Downey G, Troy DJ. Meat Science, 1998, 49(4): 399. 被引量:1
  • 8Rudbotten R, Nilsen B N, Hildrum K I, Food Chemistry, 2000, 69: 427. 被引量:1
  • 9Liu Yongliang, Lyon Bsenda G, Windham William R, et al. Meat Science, 2003, 65: 1107. 被引量:1
  • 10BAIQi-lin CHENShao-jiang DONGXiao-ling etal(白琪林 陈绍江 董晓玲 ).光谱学与光谱分析,2004,24(11):1345-1345. 被引量:1

共引文献53

同被引文献130

引证文献12

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部