期刊文献+

基于混合遗传算法的导频优化 被引量:1

Hybrid genetic algorithm based optimization of pilotpattern
下载PDF
导出
摘要 OFDM系统中,基于压缩感知的稀疏信道估计能够充分利用无线信道的固有稀疏性,进而降低导频开销,提高频谱利用率。针对压缩感知信道估计的导频设计,通过最小化压缩感知理论中测量矩阵的互相关性,提出一种基于混合遗传算法的导频优化方法。该方案首先采用遗传算法获得次优初始导频序列,然后结合导频位置以及导频功率对导频序列逐位进行替换、优化,以使测量矩阵的互相关性最小。MATLAB仿真结果表明,相比于伪随机导频设计和等间距导频设计,该算法能够保证较低的均方误差和误码率。 In OFDM system, sparse channel estimation based on compressed sensing(CS) can make full use of the inherent sparse degree of the wireless channel, which can reduce the pilot overhead and improve the spectrum efficiency. Therefore, a new method based on hybrid genetic algorithm was investigated for the pilot design of CS channel estimation, which was based on the minimization of the matrix cross correlation in the CS theory. In this method, genetic algorithm was used to obtain the initial sub-optimal pilot sequence, and then combined with the pilot position and pilot power, each entry of pilot pattern could be sequentially updated and optimized to make the minimum correlation of measurement matrix. Simulation results show that the proposed method can ensure a better mean square error and bit error rate compared to the pseudo-random pilot design and the equal distance pilot design.
出处 《电信科学》 北大核心 2016年第9期75-81,共7页 Telecommunications Science
基金 国家科技重大专项基金资助项目(No.2014ZX03003004-003)~~
关键词 信道估计 互相关性 混合遗传算法 测量矩阵 压缩感知 导频图案 channel estimation cross correlation hybrid genetic algorithm measurement matrix compressed sensing pilot pattern
  • 相关文献

参考文献17

  • 1IEEE 802.11a-1999 part 11.Wireless LAN medium access control(MAC)and physical layer(PHY)specifications[S].1999. 被引量:1
  • 2LIU Y,TAN Z,HU H,et al.Channel estimation for OFDM[J].IEEE Communications Surveys&Tutorials,2014,16(4):1891-1908. 被引量:1
  • 3GHOSH A,ZHANG J,ANDREWS J G,et al.Fundamentals of LTE[M].Upper Saddle River:Prentice Hall Press,2010:28-41. 被引量:1
  • 4NGUYEN Q D,LUU T T,PHAM L H,et al.Inter-carrier interference suppression combined with channel estimation for mobile OFDM system[C]//2016 Second Asian Conference on Defence Technology(ACDT),Jan 21-23,2016,Chiang Mai,Thailand.New Jersey:IEEE Press,2016:61-66. 被引量:1
  • 5QI C,WU L,HUANG Y,et al.Joint design of pilot powerand pilot pattern for sparse cognitive radio systems[J].IEEE Transactions on Vehicular Technology,2015,11(64):5384-5390. 被引量:1
  • 6HU D,WANG X,HE L.A new sparse channel estimation and trackingmethod for time-varying OFDM systems[J].IEEE Transactions on Vehicular Technology,2013,9(62):4648-4653. 被引量:1
  • 7BARBOTIN Y,VETTERLI M.Fast and robust parametric estimation ofjointly sparse channels[J].IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2012,3(2):402-412. 被引量:1
  • 8BAJWA W U,HAUPT J,SAYEED A M.Compressed channel sensing:anew approach to estimating sparse multipath channels[J].Proceedings of the IEEE,2010,98(6):1058-1076. 被引量:1
  • 9HU D,HE L H,WANG X D.An efficient pilot design methodfor OFDM-based cognitive radio systems[J].IEEE Transactions on Wireless Communications,2011,10(4):1252-1259. 被引量:1
  • 10HE X Y,SONG R F,ZHU W P.Pilot allocation for sparse channel estimation in MIMO-OFDM systems[J].IEEE Transactions on Circuits Systems II:Express Briefs,2013,9(60):612-616. 被引量:1

二级参考文献13

  • 1China Mobile Research Inst. C-RAN : The Road TowardsGreen RAN, white paper, v. 2. 5 [ R]. Beijing: ChinaMobile Research Inst, 2011. 被引量:1
  • 2DAEWON L,HANBYUL S, CLERCKX B,et al. Coordi-nated multipoint transmission and reception in LTE-ad-vanced : deployment scenarios and operational challenges[J ]. IEEE Communications Magazine,2012, 2 ( 50 ):148-155. 被引量:1
  • 33GPP. TR 36. 819 vll. 2. 0,Technical specificationgroup radio access network ; Coordinated multi-point oper-ation for LTE physical layer aspects ( Release 11 ) [ S].Valbonne, FRANCE: 3GPP, 2013. 被引量:1
  • 4BERGER C R,ZHOU S,CHEN W, et al. Sparse chan-nel estimation for OFDM: Over-complete dictionaries andsuper-resolution [ C ] // IEEE. Proc of IEEE Workshop onSignal Processing Advances in Wireless Communications.Perugia, Italy : IEEE Press, 2009 : 196-200. 被引量:1
  • 5DONOHO D L. Compressed sensing[ J]. IEEE Trans onInfo Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 6HE Xueyun, SONG Rongfang. Pilot pattern optimizationfor compressed sensing based sparse channel estimation inOFDM systems [ J ]. IEEE Communications Magazine,2010,10(7) :560-576. 被引量:1
  • 7HE X Y, SONG R F, ZHU W P. Optimal pilot patterndesign for compressed sensing-based sparse channel esti-mation in OFDM systems[ J]. Circuits Systems and SignalProcessing,2012,31 (4) : 1379-1395. 被引量:1
  • 8QI Chenhao, WU Lenan. Optimized pilot placement forsparse channel estimation in OFDM systems [ J ]. IEEESignal processing letters, 2011,18( 12) : 1070-1075. 被引量:1
  • 9SHARP M,SCAGLIONE A. A useful performance metricfor compressed channel sensing[ J]. IEEE Transactionson Signal Processing, 2011,59(6) :2982-2988. 被引量:1
  • 10HAUPT J, NOWAK R. Signal reconstruction from noisyrandom projections [ J]. IEEE Transactions on Informa-tion Theory, 2006, 52(9) :40364048. 被引量:1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部