期刊文献+

Hierarchically porous carbon foams for electric double layer capacitors 被引量:5

Hierarchically porous carbon foams for electric double layer capacitors
原文传递
导出
摘要 The growing demand for portable electronic devices means that lightweight power sources are increasingly sought after. Electric double layer capacitors (EDLCs) are promising candidates for use in lightweight power sources due to their high power densities and outstanding charge/discharge cycling stabilities. Three-dimensional (3D) self-supporting carbon-based materials have been extensively studied for use in lightweight EDLCs. Yet, a major challenge for 3D carbon electrodes is the limited ion diffusion rate in their internal spaces. To address this limitation, hierarchically porous 3D structures that provide additional channels for internal ion diffusion have been proposed. Herein, we report a new chemical method for the synthesis of an ultralight (9.92 mg/cm3) 3D porous carbon foam (PCF) involving carbonization of a glutaraldehyde- cross-linked chitosan aerogel in the presence of potassium carbonate. Electron microscopy images reveal that the carbon foam is an interconnected network of carbon sheets containing uniformly dispersed macropores. In addition, Brunauer-Emmett-Teller measurements confirm the hierarchically porous structure. Electrochemical data show that the PCF electrode can achieve an outstanding gravimetric capacitance of 246.5 F/g at a current density of 0.5 A/g, and a remarkable capacity retention of 67.5% was observed when the current density was increased from 0.5 to 100A/g. A quasi-solid-state symmetric supercapacitor was fabricated via assembly of two pieces of the new PCF and was found to deliver an ultra-high power density of 25 kW/kg at an energy density of 2.8 Wh/kg. This study demonstrates the synthesis of an ultralight and hierarchically porous carbon foam with high capacitive performance. The growing demand for portable electronic devices means that lightweight power sources are increasingly sought after. Electric double layer capacitors (EDLCs) are promising candidates for use in lightweight power sources due to their high power densities and outstanding charge/discharge cycling stabilities. Three-dimensional (3D) self-supporting carbon-based materials have been extensively studied for use in lightweight EDLCs. Yet, a major challenge for 3D carbon electrodes is the limited ion diffusion rate in their internal spaces. To address this limitation, hierarchically porous 3D structures that provide additional channels for internal ion diffusion have been proposed. Herein, we report a new chemical method for the synthesis of an ultralight (9.92 mg/cm3) 3D porous carbon foam (PCF) involving carbonization of a glutaraldehyde- cross-linked chitosan aerogel in the presence of potassium carbonate. Electron microscopy images reveal that the carbon foam is an interconnected network of carbon sheets containing uniformly dispersed macropores. In addition, Brunauer-Emmett-Teller measurements confirm the hierarchically porous structure. Electrochemical data show that the PCF electrode can achieve an outstanding gravimetric capacitance of 246.5 F/g at a current density of 0.5 A/g, and a remarkable capacity retention of 67.5% was observed when the current density was increased from 0.5 to 100A/g. A quasi-solid-state symmetric supercapacitor was fabricated via assembly of two pieces of the new PCF and was found to deliver an ultra-high power density of 25 kW/kg at an energy density of 2.8 Wh/kg. This study demonstrates the synthesis of an ultralight and hierarchically porous carbon foam with high capacitive performance.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第10期2875-2888,共14页 纳米研究(英文版)
基金 This work was supported by Jiangsu Government Scholarship for overseas studies, National Nature Science Foundation of China (Nos. 11204266 and 21276220), and Nature Science Foundation of Jiangsu Province (Nos. BK20141262 and BK20140463). The authors thank Dr. Tom Yuzvinsky from University of California, Santa Cruz for SEM images acquisition and acknowledge the W. M. Keck Center for Nanoscale Opto-fluidics for use of the FEI Quanta 3D Dual-beam scanning electron microscope. The authors also acknowledge Prof. Zhonghua Zhang from Shandong University for his help with BET characterization, Prof. Jin Z. Zhang from University of California, Santa Cruz, for offering the access to Reinshaw Raman spectrometer, Mr. Fuxin Wang from Sun Yat-sen University for TEM characterization, Prof. Xiaoxia Liu and Mr. Yu Song from Northeastern University for their generous help with AFM characterization.
关键词 hierarchically porouss tructure glutaraldehyde-crosslinked chitosan light weight carbon foam electrical double layer capacitors hierarchically porouss tructure,glutaraldehyde-crosslinked chitosan,light weight,carbon foam,electrical double layer capacitors
  • 相关文献

参考文献72

  • 1Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854. 被引量:1
  • 2Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, DOI: 10.1126/science. 1246501. 被引量:1
  • 3Zhai, T.; Lu, X. H.; Wang, H. Y.; Wang, G. M.; Mathis, T.; Liu, T. Y.; Li, C.; Tong, Y. X.; Li, Y. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett. 2015, 15, 3189-3194. 被引量:1
  • 4Chabi, S.; Peng, C.; Hu, D.; Zhu, Y. Q. Ideal three- dimensional electrode structures for electrochemical energy storage. Adv. Mater. 2014, 26, 2440-2445. 被引量:1
  • 5Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042-4049. 被引量:1
  • 6Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three- dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666-1675. 被引量:1
  • 7Ruiz, V.; Blanco, C.; Santamaria, R.; Ramos-Femndez, J. M.; Martlnez-Escandell, M.; Sepfllveda-Escribano, A.; Rodriguez- Reinoso, F. An activated carbon monolith as an electrode material for supercapacitors. Carbon 2009, 47, 195-200. 被引量:1
  • 8Yang, Y. B.; Li, P. X.; Wu, S. T.; Li, X. Y.; Shi, E. Z.; Shen, Q. C.; Wu, D. H.; Xu, W. J.; Cao, A. Y.; Yuan, Q. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage. Chem. Eur. J. 2015, 21, 6157-6164. 被引量:1
  • 9Cheng, Y. L.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L. Y.; Li T. Q.; Hu, Z. M.; Wang, B.; Wan, J.; Zhou, J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015, 15, 66-74. 被引量:1
  • 10Niu, Z. Q.; Zhou, W. Y.; Chert, J.; Feng, G. X.; Li, H.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D. et al. Compact-designed supercapacitors using free-standing single- walled carbon nanotube films. Energy Environ. Sci. 2011, 4, 1440-1446. 被引量:1

同被引文献23

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部