期刊文献+

谱聚类算法及其研究进展

Spectral Clustering and its Research Progress
下载PDF
导出
摘要 谱聚类具有良好的理论基础,被广泛应用于科学研究与工程应用的各个领域,成为聚类分析领域重要的新兴分支,受到越来越多的研究者的重视。然而,国内相关文献较少,该文从谱聚类算法的产生、研究进展、基础理论及代表算法等方面对谱聚类算法作简要综述,有望使读者对该领域形成初步认识。 Spectral clustering has good theoretic foundation, and has been applied in various science research and engineering fields. It becomes an important new popular tool for clustering analysis. With its development, spectral clustering attracts much more attention from researchers. However, there are few literatures on it. This paper gives a brief review about the creation, de-velopment, theoretic analysis and classical methods of spectral clustering.
作者 邢洁清 符传谊 XING Jie-qing, FU Chuan-yi (Department of Modem Education Technology, Qiongtai Normal College, Haikou 571100, China)
出处 《电脑知识与技术》 2016年第7期159-161,共3页 Computer Knowledge and Technology
基金 海南省高等学校科学研究项目(No.Hjkj2013-54) 海南省自然科学基金项目(NO.614246)
关键词 谱聚类 聚类 图划分 spectral clustering clustering graph partition
  • 相关文献

参考文献5

二级参考文献129

  • 1田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 2Fiedler M. Algebraic connectivity of graphs [J]. Czechoslovak Mathematical Journal, 1973, 23(98): 298-305. 被引量:1
  • 3Shi J,Malik J. Normalized cuts and image segmentation [J]. IEEE Tram on PAMI,2000,22 (8): 888-905. 被引量:1
  • 4Hyvarinen A, Oja E. Independent Component Analysis: Algorithms and Application [J]. Neural Networks, 2003, 13(4/5): 411-430. 被引量:1
  • 5Fowlkes C, Belongie S, Chung F et al. Spectral Grouping Using the Nystrom Method. IEEE Trans Pattern Anal Mach Intel, 2004, 26 (2): 214- 225. 被引量:1
  • 6MIT Vision and Modeling Group [OL]. htttp://www.media.mit. edu/vismod/, 1998 被引量:1
  • 7Brodatz P. Textures: A Photographics Album for Artists and Designers [M]. New York: Dover, 1966 被引量:1
  • 8Tuceryan M, Jain A K. Texture analysis [A]. In: Chen CH, Pau L F, Wang P S P. The handbook of pattern recognition and computer vision, 2nd ed [C]. Singapore: World Scientific Publishing Company, 1998. 207~ 248 被引量:1
  • 9Reed T R, du Bur J. A review of recent texture segmentation and feature extraction techniques [J]. Computer Vision,Graphics, and lmage Processing: Image Understanding, 1993,57(3): 359~372 被引量:1
  • 10Zhang J G, Tan T N. Brief review of invariant texture analysis methods [J]. Pattern Recognition, 2002, 35(3): 735~747 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部