期刊文献+

基于网络数据的企业知识图谱可视化 被引量:2

Visualization for Enterprise Knowledge Graph Based on Web Data
下载PDF
导出
摘要 知识图谱也被称为科学知识图谱,可以揭示复杂知识领域的动态发展规律.基于自然语言处理技术从海量Web数据中抽取命名实体及命名实体关系,从而构建企业知识图谱.设计并实现了一种基于知识图谱的可视化分析方法,在网络图中融入集合可视化,从全局和细节两个层次进行可视分析,构建了企业知识图谱可视化分析平台.通过案例分析表明,该可视化研究方法满足用户对相关数据的可视化分析. Knowledge graph, also known as scientific knowledge graph, can reveal the law of the dynamic development in complex knowledge fields. Named entities and named entity relationships are extracted from mass web data via natural language processing technique to build an enterprise knowledge graph. Then a visual analysis method is designed and implemented based on the knowledge graph, which can analyze enterprise relationships from two levels, namely, global and detailed levels, by integrating set visualization into network graph. Finally, a visual analysis platform of enterprise knowledge graph is structured. The case analysis shows that the research meets the needs of users for the visualized analysis of the corresponding data.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期473-477,484,共6页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金面上资助项目(61272199) 教育部博士点基金资助项目(20130076110008)
关键词 可视分析 企业知识图谱 网络数据 visual analysis enterprise knowledge graph web data
  • 相关文献

参考文献15

  • 1FININ T, DING L, ZHOU L, et al. Social networking on the semantic web [J ]. Learning Organization, 2005, 12 ( 5 ): 418-435. 被引量:1
  • 2SUCHANEK F, KASNECI G, WEIKUM G. YAGO: A core of semantic knowledge unifying wordnet and wikipedia[C]// Proceedings of the WWW Conference. 2007 : 697-706. 被引量:1
  • 3BIZER C, AUER S, LEHMANN J, et al. Dbpedia-querying wikipedia like a database[C]// International World Wide Web Conference. 2007 : 8-12. 被引量:1
  • 4DESHPANDE O, LAMBA D, TOURN M, et al. Building, maintaining, and using knowledge bases, A report from the trenches [ C ]// SIGMOD: International Conference on Management of Data. 2013 : 1209-1220. 被引量:1
  • 5ALPER B, RICHE N, RAMOS G, et al. Design study of linesets, a novel set visualization technique[J]. Visualization and Computer Graphics, IEEE Transactions on, 2011,17(12) : 2259-2267. 被引量:1
  • 6GANSNER E, HU Y F, KOBOUROV S. Visualizing graphs and clusters as maps[J]. Computer Graphics and Applications, IEEE, 2010,30(6) :54-66. 被引量:1
  • 7GANSNER E, HU Y F, KOBOUROV S. Gmap.. Visualizing graphs and clusters as maps [C]// Pacific Visualization Symposium(PacificVis), 2010 IEEE. 2010..201-208. 被引量:1
  • 8JIANU R, RUSU A, HU Y F, et aI. How to display group information on node-link diagrams An evaluation[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20( 11 ) .. 1530-1541. 被引量:1
  • 9RAJARAMAN A, ULLMAN J. Mining of massive datasets [M]. Camhridge Cambridge University Press,201185-89. 被引量:1
  • 10JEAN-MARY Y, SHIRONOSHITA E, KABUKA M. Ontology matching with semantic verification [ J ]. Web Semantics: Science, Services and Agents on the World Wide Web, 2009,7(3) :235-251. 被引量:1

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部