期刊文献+

基于改进FP-Growth算法的CRHX型动车组牵引系统关联失效模型研究 被引量:5

Research on Correlation Failure Models of CRHX EMU Traction System Based on the Improved FP-Growth Algorithm
下载PDF
导出
摘要 基于CRHX型动车组牵引系统运营过程中的故障数据,分析故障数据的特征,研究设备之间的关联失效关系。依托课题组前期对故障信息特征词提取的研究,本文结合故障信息特征词的特点优化经典的关联规则挖掘算法,提出改进的FP-Growth算法,并进行算法性能测试,结果表明该算法准确高效;基于改进的FPGrowth算法分析设备的故障信息特征词,挖掘设备关联失效规则,建立设备的关联失效模型。最后,以CRHX型动车组牵引系统为例进行研究,验证了改进FP-Growth算法的有效性和实用性。 Based on the failure data of CRHX EMU traction system in the process of its operation, the features of these data were analyzed, and the correlation failure relationships between equipment were investigated. Based on the earlier study of the extraction of the fault information feature words, the improved FP-Growth al- gorithm was obtained through optimizing the classical correlation rule mining algorithm combined with the characteristics of fault information feature words. The results of the performance test of the algorithm proved the accuracy and efficiency of the algorithm. After the improved FP-Growth algorithm was used to analyze the fault information feature words of the equipment and to extract equipment correlation failure rules, an equipment correlation failure model was established. At last, a case study of the CRHX EMU traction system veri- fied the effectiveness and practicability of the improved FP-Growth algorithm.
出处 《铁道学报》 EI CAS CSCD 北大核心 2016年第9期72-80,共9页 Journal of the China Railway Society
基金 轨道交通控制与安全国家重点实验室自主研究课题(RCS 2016ZZ002)
关键词 故障信息 改进FP-Growth算法 关联规则 关联失效模型 fault information the improved FP-Growth algorithm correlation rules correlation failure model
  • 相关文献

参考文献5

二级参考文献27

  • 1李力,靳蕃.A New Algorithm for Mining Frequent Pattern[J].Journal of Southwest Jiaotong University(English Edition),2002,10(1):10-20. 被引量:2
  • 2铁道部运输局.CRH2型动车组司机手册[M].北京:中国铁道出版社,2006:30-53. 被引量:1
  • 3梅启智,廖炯生,孙惠中.系统可靠性工程基础[M].北京:国防工业出版社,1992:446-465. 被引量:3
  • 4AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[ C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1993:207-216. 被引量:1
  • 5AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ C]// VLDB 1994: Proceedings of the 20th International Conference on Very Large Database. [ S. l. ] : Morgan Kaufmann, 1994: 478 - 499. 被引量:1
  • 6HAN JIAWEI, KAMBER M. Data mining: Concepts and techniques [M].影印版.北京:高等教育出版社,2001. 被引量:1
  • 7HAN JIAWEI, PEI JIAN, YIN YIWEN. Mining frequent patterns without candidate generation[J]. ACM SIGMOD Record, 2000, 29 (2): 1-12. 被引量:1
  • 8ZHOU QINGHUA, CHU W W, LU BAOJING. SmartMiner: A depth first algorithm guided by tail information for mining maximal frequent itemsets[ C]//ICDM 2002: Proceedings of IEEE International Conference on Data Mining. Washington, DC: IEEE, 2002: 570- 577. 被引量:1
  • 9GRAHNE G, ZHU JIANFEI. Fast algorithms for frequent itemset mining using FP-trees[ J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(10) : 1347 - 1362. 被引量:1
  • 10PIETRACAPRINA A, ZANDOLIN D. Mining frequent itemsets using patficia tries[C] //FIMI '03: Proceedings of the 1st Workshop on Frequent Itcmset Mining Implementations. Melbourne, Florida, USA: [ s. n. ], 2003:204 -208. 被引量:1

共引文献49

同被引文献42

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部