摘要
针对一类Riemann-Loiuville型分数阶差分方程,利用分数阶差分性质,构造了一个Volterra和分方程,再利用离散分数阶Gronwall不等式和离散Mittag-Leffler函数的性质,在合适的条件下获得了这个方程解对初值的连续依赖性,并用新方法证明了解的唯一性。
This paper is concerned with a class of Riemann-Loiuville fractional difference equations. Volterra Summation Decomposition Equation is obtained by using of properties of fractional differences. Under the suitable conditions, the continuous dependence of solutions on initial data is derived by resorting to the discrete fractional Gronwall inequality and properties of the discrete Mittag-Leffler function. A new method is given to prove the uniqueness of solutions.
出处
《合肥学院学报(综合版)》
2016年第4期1-4,共4页
Journal of Hefei University:Comprehensive ED
基金
国家自然科学基金(11401002
11301004)
安徽省自然科学基金(1508085QA01)
安徽省高校自然科学重点研究项目(KJ2014A010)
安徽省高等教育质量工程项目(2015jyxm057)
安徽大学质量提升计划项目(ZLTS2015052)资助