期刊文献+

一类Riemann-Loiuville型分数阶差分方程解对初值的连续依赖性 被引量:3

Continuous Dependence of Solutions on Initial Data for a Class of Riemann-Loiuville Fractional Difference Equations
下载PDF
导出
摘要 针对一类Riemann-Loiuville型分数阶差分方程,利用分数阶差分性质,构造了一个Volterra和分方程,再利用离散分数阶Gronwall不等式和离散Mittag-Leffler函数的性质,在合适的条件下获得了这个方程解对初值的连续依赖性,并用新方法证明了解的唯一性。 This paper is concerned with a class of Riemann-Loiuville fractional difference equations. Volterra Summation Decomposition Equation is obtained by using of properties of fractional differences. Under the suitable conditions, the continuous dependence of solutions on initial data is derived by resorting to the discrete fractional Gronwall inequality and properties of the discrete Mittag-Leffler function. A new method is given to prove the uniqueness of solutions.
出处 《合肥学院学报(综合版)》 2016年第4期1-4,共4页 Journal of Hefei University:Comprehensive ED
基金 国家自然科学基金(11401002 11301004) 安徽省自然科学基金(1508085QA01) 安徽省高校自然科学重点研究项目(KJ2014A010) 安徽省高等教育质量工程项目(2015jyxm057) 安徽大学质量提升计划项目(ZLTS2015052)资助
关键词 Riemann-Loiuville分数阶差分方程 Volterra和分方程 离散分数阶Gronwall不等式 离散Mittag—Leffler函数 Riemann-Loiuville fractional difference equation Voherra summation decomposition equation discrete fractional Gronwall inequality discrete Mittag-Leffler function.
  • 相关文献

参考文献9

  • 1郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10. 被引量:49
  • 2Mainardi F, Gorenfl R. On Mittag-Leffler-type Functions in Fractional Evolution Processes [ J]. J Comput Appl Math,2000, 118:283-299. 被引量:1
  • 3Dartardar-Gejji V , Babakhani A. Analysis of a System of Fractional Differential Equations [J]. J Math Anal Appl, 2004,293:511-522. 被引量:1
  • 4Diethelm K, Ford N J. Multi-order Fractional Differential Equations and Their Numerical Solution [ J] . Appl Math Comput,2004,154:621-640. 被引量:1
  • 5Abdeljawad T. On Riemann and Caputo Fractional Difference [J]. Applied Mathematics and Computation, 2011,62(3):1602-1611. 被引量:1
  • 6Atici F M , Eloe P W. A Transform Method in Discrete Fractional Calculus [ J]. Integral and Finite Difference Inequalitiesand Applications, 2007 , 2(2) : 165-176. 被引量:1
  • 7BastosN R 0. Discrete-time Fractional Variational Problems [J]. Signal Process, 2011,91(3) : 513-524. 被引量:1
  • 8程金发著..分数阶差分方程理论[M].厦门:厦门大学出版社,2011:283.
  • 9程金发.分数(k,q)阶差分方程的解[J].应用数学学报,2011,34(2):313-330. 被引量:9

二级参考文献70

  • 1徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 2Hale J K. Ordinary Differential Equations. New York: Wiley, 1969. 被引量:1
  • 3Hartman P. Ordinary Differential Equations. Second Edition. Boston-Basel-Stuttgaxt: Birkhauser, 1982. 被引量:1
  • 4Agarwal R P. Difference Equations and Inequalities. Marcel Dekker, Inc., Newyork, 1992. 被引量:1
  • 5Samko S G, Kilbas A A, Maritchev O I. Integrals and Derivatives of the Fractional order and Some of their Applications. Minsk: Naukai Tekhnika, 1987. 被引量:1
  • 6Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley and Sons, 1993. 被引量:1
  • 7Podlubny I. Fractional Differential Equations. San Diego: Acad Press, 1999. 被引量:1
  • 8Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies,204,Elsevier, 2006. 被引量:1
  • 9Mainardi F, Gorenflo R. On Mittag-Leffler-type functions in fractional evolution processes. J. Cornput. Appl. Math., 2000, 118: 283-299. 被引量:1
  • 10Diethelm K, Ford N J. Multi-order Fractional Differential Equations and their Numerical Solution. Appl. Math. Comput., 2004, 154:621-640. 被引量:1

共引文献53

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部