期刊文献+

三维环境下无线传感器网络的部署覆盖方法 被引量:8

Method of Deployment and Coverage for Wireless Sensor Networks in Three Dimensional Environment
下载PDF
导出
摘要 针对三维传感器网络中节点的最优部署问题,提出一种三维曲面上目标点的部署策略,通过引用差分进化(DE)算法优化传感器节点的位置坐标,提高了网络节点的部署效率,并用最少的传感器节点实现对曲面上目标点的全覆盖,解决了三维空间中传感器节点在监测目标过程中存在的三维感知盲区问题.仿真实验验证了DE算法在解决三维空间覆盖问题的可行性,表明DE算法具有一定的容错性,并可有效提高网络节点的部署效率. Aiming at the problem of optimal deployment of nodes in three dimensional sensor networks,we proposed a deployment strategy for the target point on a three dimensional curved surfaces.The proposed algorithm improved the deployment efficiency of the network nodes by using differential evolution(DE)algorithm to optimize the position coordinates of sensor nodes.The algorithm used the least sensor nodes to achieve the full coverage of the target point on the curved surfaces,and solved the problem of three dimensional perception blind spot in the process of monitoring target of sensor nodes in three dimensional space.The simulation experiments verify the feasibility of DE algorithm in solving the coverage problem of three dimensional space.It shows that DE algorithm has a certain degree of fault tolerance and can effectively improve the deployment efficiency of network nodes.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第5期1109-1116,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:21206053 21276111) 中央高校基本科研业务费专项基金(批准号:JUSRP11560) 江苏省"六大人才高峰"高层次人才项目(批准号:2012-WLW-006) 江苏省高校优势学科建设工程项目(批准号:PAPD) 2016年江苏省政策引导类计划项目(批准号:BY2016022-12)
关键词 三维无线传感器网络 部署效率 覆盖 差分进化算法 three dimensional sensor network deployment efficiency coverage differential evolution(DE)algorithm
  • 相关文献

参考文献14

  • 1Alam S M N, Haas Z J. Coverage and Connectivity in Three-Dimensional Networks with Random Node Deployment [J]. Ad Hoc Networks, 2015, 34: 157-169. 被引量:1
  • 2Gupta H P, Rao S V, Venkatesh T. Analysis of Stochastic Coverage and Connectivity in Three-Dimensional Heterogeneous Directional Wireless Sensor Networks [J]. Pervasive and Mobile Computing, 2016, 29: 38-56. 被引量:1
  • 3Shih K P, Chen H C, Chou C M, et al. On Target Coverage in Wireless Heterogeneous Sensor Networks with Multiple Sensing Units [J]. Journal of Network and Computer Applications, 2009, 32(4) : 866-877. 被引量:1
  • 4刘人杰..基于模型的无线传感器网络的目标覆盖[D].哈尔滨工程大学,2012:
  • 5XU Yan, ZHUANG Yi, GU Jingjing. An Improved 3D Localization Algorithm for the Wireless Sensor Network [J]. International Journal of Distributed Sensor Networks, 2015, 11(6).. dio: 10. 1155/2015/315714. 被引量:1
  • 6Santi P, Simon J. Silence Is Golden with High Probability: Maintaining a Connected Backbone in Wireless Sensor Networks FM]. Wireless Sensor Networks. Berlin: Springer, 2004: 106-121. 被引量:1
  • 7Megerian S, Koushanfar F, Potkonjak M, et al. Worst and Best-Case Coverage in Sensor Networks [J]. IEEE Transactions on Mobile Computing, 2005, 4(1).. 84-92. 被引量:1
  • 8邢冀鹏..无线传感器网络目标覆盖算法研究[D].华中科技大学,2008:
  • 9谷雨.无线传感器网络中目标覆盖的研究[D].合肥:中国科学技术大学,2010. 被引量:1
  • 10赵玫,杨洪勇,李路伟.基于权重的目标覆盖控制算法[J].控制与决策,2014,29(10):1845-1850. 被引量:6

二级参考文献25

  • 1刘丽萍,王智,孙优贤.无线传感器网络部署及其覆盖问题研究[J].电子与信息学报,2006,28(9):1752-1757. 被引量:58
  • 2Jennifer Yick,Biswanath Mukherjee,Dipak Ghosal.Wireless SensorNetwork Survey[J].IEEE Computer Networks,2008,52(12):2292-2330. 被引量:1
  • 3Dhillon S S,Chakrabarty K.Sensor Placement for Effective Coverageand Surveillance in Distributed Sensor Networks[C]//IEEEWireless Communications and Networking Conference(WCNC-03),2003:1609-1614. 被引量:1
  • 4Ka-Shun Hung,King-Shan Lui.On Perimeter Coverage in WirelessSensor Networks[J].IEEE Transactions on Wireless Communica-tions,2010,9(7):2156-2164. 被引量:1
  • 5Yi Zou,Krishnendu Chakrabarty.A Distributed Coverage and Con-nectivity Centric Technique for Selecting Active Nodes in WirelessSensor Networks[J].IEEE Transactions on Computers,2005,54(8):978-991. 被引量:1
  • 6Zhang H,Hou J C.Maintaining Sensing Coverage and Connectivityin Large Sensor Networks[J].AdHoc&Sensor Networks,2005,1(1-2):89-124. 被引量:1
  • 7Yan Ruoyu,Zheng Qinhua.Using Renyi Cross Entropy to AnalyzeTraffic Matrix and Detect DdoS Attacks[J].InformationTechnology Journal,2009,8(8):1180-1188. 被引量:1
  • 8Anukool L,Mark C,Christophe D.Mining Anomalies Using TrafficFeature Distributions[C]//Proceedings of Special Interest Groupon Data Communication Conference,USA:ACM,2005:217-228. 被引量:1
  • 9George N,Vyas S,David G.An Empirical Evaluation of Entropy-Based Traffic Anomaly Detection[C]//Proceedings of InternetMeasurement Conference,USA:ACM,2008:151-156. 被引量:1
  • 10Qin Tao,Guan Xiaohong,Li Wei.Dynamic Features Measurementand Analysis for Large-scale Networks[C]//Proceedings of Inter-national Conference on Communications,USA:IEEE,2008:212-216. 被引量:1

共引文献28

同被引文献49

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部