摘要
A hydro-dynamic model is established on basis of MIKE21 FM to simulate the hydro-dynamic characteristics of Xinghua Bay and investigate the influence of reclamation project on the tidal elevation and tidal currents. Tidal elevation data was obtained at the six tide gauge stations around the Xinghua Bay, and another six current stations were established to observe the tidal current velocity and direction. Validation shows that the model-simulated tidal elevation and tidal currents agree well with observations made at different stations. Predictions are made according to the reclamation project proposed in the regional marine planning of Hanjiang Industrial Park around the port in Putian City. The variations of hydro-dynamic factors, such as tide, current velocity and direction and tidal influx are obtained, and the adverse effect of reclamation on marine environment is discussed. It is shown that the tidal level inside the Xinghua Bay during high tide decreases after the reclamation project is completed. The tidal currents during flooding tide generally decrease in the southeast of the reclamation region, with the maximum decreasing amplitude reaching 0.44 m s^(-1). On the other hand, the tidal currents during flooding tide increase around the southeast and southwest corners of the reclamation region. The tidal currents during ebb tide increase around the southeast and southwest corners of the reclamation region, with the maximum increasing amplitude attaining 0.18 m s^(-1). The results in this paper can give some guidance for the marine environment management and the effective utilization of land in Putian.
A hydro-dynamic model is established on basis of MIKE21 FM to simulate the hydro-dynamic characteristics of Xinghua Bay and investigate the influence of reclamation project on the tidal elevation and tidal currents. Tidal elevation data was obtained at the six tide gauge stations around the Xinghua Bay, and another six current stations were established to observe the tidal current velocity and direction. Validation shows that the model-simulated tidal elevation and tidal currents agree well with observations made at different stations. Predictions are made according to the reclamation project proposed in the regional marine planning of Hanjiang Industrial Park around the port in Putian City. The variations of hydro-dynamic factors, such as tide, current velocity and direction and tidal influx are obtained, and the adverse effect of reclamation on marine environment is discussed. It is shown that the tidal level inside the Xinghua Bay during high tide decreases after the reclamation project is completed. The tidal currents during flooding tide generally decrease in the southeast of the reclamation region, with the maximum decreasing amplitude reaching 0.44 m s^(-1). On the other hand, the tidal currents during flooding tide increase around the southeast and southwest corners of the reclamation region. The tidal currents during ebb tide increase around the southeast and southwest corners of the reclamation region, with the maximum increasing amplitude attaining 0.18 m s^(-1). The results in this paper can give some guidance for the marine environment management and the effective utilization of land in Putian.
基金
supported by the Regional Marine Planning of Hanjiang Industrial Park around the port in Putian City