期刊文献+

基于数据挖掘和机器学习的恶意代码检测方法 被引量:12

A Malicious Code Detection Method Based on Data Mining and Machine Learning
下载PDF
导出
摘要 近年来,恶意代码采用花指令以及加壳等方法来绕过杀毒软件的检测,而现有的方法对于变种恶意代码无法准确的识别.鉴于恶意代码对计算机安全性的威胁以及恶意代码传播速度快、种类繁多的特点,采用数据挖掘和机器学习的方法对恶意代码进行识别与检测.首先,提出了一种基于数据挖掘和机器学习的恶意代码检测框架,并分别从文本结构层、字节层、代码层3个角度提取了代码特征;然后采用主成分分析的方法对3种层次的组合特征进行特征降维;最后采用不同的分类方法对恶意代码进行识别与分类.分类结果表明:基于组合特征的不同分类方法对恶意代码的识别准确率都在90%以上,能够实现对变种恶意代码的有效检测,为恶意代码查杀提供了一种十分有效的方法,其中决策树分类方法的识别准确率最优. In recent years,malicious code uses flower instructions and packers and other methods to bypass the detection of antivirus software,while the identification of existing methods for variants of malicious code can not be accurate.In the view of threat of malicious code on computer security and features of fast spread and wide variety,this paper uses the data mining and machine learning method to recognize and detect malicious code.Firstly,it proposes a malicious code detection framework based on data mining and machine learning,and extracts the code features from text structure layer,byte layer and code layer respectively.Secondly,it adapts the principal component analysis to reduce the dimension of combined feature matrix Finally,it recognizes and classifies the malicious code using various classification methods.The result shows that the accuracy rate of every classification method based on combined feature matrix is higher than 90%,and among them,the method of decision tree gets the best.It is able to achieve effective detection of variants of malicious code,and provide a very effective method for malware killing to detect the variants of malicious code.
出处 《信息安全研究》 2016年第1期74-79,共6页 Journal of Information Security Research
关键词 恶意代码 多维特征 数据挖掘 机器学习 代码检测 malicious code multidimensional feature data mining machine learning code detection
  • 相关文献

参考文献1

二级参考文献19

  • 1Manuel E, Theodoor S, Engin K, et al. A Survey on automated dynamic malware-analysis teclmiques and tools[J]. ACM Computing Surveys, 2012, 4(2): 1-49. 被引量:1
  • 2Ilsun Y, Kangbin Y. Malware obfuscation techniques: A brief survey[C]//Proceedings of the 2010 International Conference on Broadband, Wireless Computing, Communication and Applications. Washington, DC, USA: IEEE, 2010: 297-300. 被引量:1
  • 3Jacob G, Debar H, Fillol E. Behavioral detection of Malware: From a survey towards all established taxonomy[J]. Computer Virology, 2008, 4(3): 251-266. 被引量:1
  • 4Engin K, Christopher K. Behavior-based spyware detection[C]// Proceedings of the 15th conference on USENIX Security Symposium. Berkeley, CA, USA: USENIX Association, 2006: 1-16. 被引量:1
  • 5Mihai C, Somesh J, Christopher K. Mining specifications of malicious behavior[C]//Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering. New York, USA: ACM, 2007: 5-14. 被引量:1
  • 6Mila P, Mihai C, Somesh J, et al. A semantics-based approach to Malware detection[C]// Proceedings of the 34th Annual ACM SIGPLAN-S1GACT Symposium on Principles of Programming Languages. New York, USA: ACM, 2007: 377-388. 被引量:1
  • 7Faraz A, Haider H, M. Zubair S, et al. Using spatio-temporal information in API calls with machine learning algorithms for Malware detection[C]//Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence. NY, USA: ACM, 2009: 55-62. 被引量:1
  • 8Matzinger E Tolerance, danger and the extended family[J]. Annual Review on Immunology, 1994, 12(4): 991-1045. 被引量:1
  • 9Julie G. The dendritic cell algorithm[D]. Nottingham, UK: the University of Nottingham, 2007:90-100. 被引量:1
  • 10Jean-Marie B, Eric F, Ludovic M. Are current antivims programs able to detect complex metamorphic malware? An empirical evaluation[C]// Proceedings of the 18th EICAR Annual Conference. Prance, 2009: 1-19. 被引量:1

共引文献3

同被引文献33

引证文献12

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部