期刊文献+

结合中值滤波与稀疏表示的混合去噪算法 被引量:3

Hybrid Denoising Algorithm Combining Median Filtering with Sparse Representation
下载PDF
导出
摘要 针对现有去噪算法不能有效去除高斯-椒盐混合噪声的问题,提出一种基于自适应中值滤波与改进稀疏表示的混合去噪算法。采用自适应中值滤波对带噪图像进行初始化,检测并初步抑制脉冲椒盐噪声,利用改进的K奇异值分解字典学习方法与基于回溯自适应的正交匹配追踪稀疏编码方法对处理后的图像进行高斯去噪。实验结果表明,与稀疏非局部正则化加权编码混合去噪算法相比,该算法在混合噪声较大的情况下,具有更高的峰值信噪比和更快的去噪速度。 As current algorithm cannot effectively remove Gaussian and salt-pepper hybrid noise,this paper proposes a hybrid denosing algorithm combining Adaptive Median Filtering(AMF) with improved sparse representation. It uses the AMF to realize initialization for noisy image detect and suppress salt and pepper noise, and then removes Gaussian noise by means of improved K-Singular Value Decomposition (K-SVD) dictionary learning method and Backtracking-based Adaptive Orthogonal Matching Pursuit (BAOMP) sparse coding method. Experimental result shows the proposed algorithm gains higher Peak Signal to Noise Ratio (PSNR) and faster denoising speed than Weighted Encoding with Sparse Nonlocal Regularization(WESNR) algorithm in larger Gaussian noise condition.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第9期240-245,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61402053) 湖南省交通厅科技基金资助项目(201334) 2015年湖南省研究生科研创新基金资助项目(CX2015B369) 2015年湖南省大学生研究性学习和创新性实验计划基金资助项目(湘教通[2015]269号)
关键词 自适应中值滤波 稀疏表示 高斯噪声 椒盐噪声 混合去噪 Adaptive Median Filtering (AMF) sparse representation Gaussian noise salt and pepper noise hybrid denosing
  • 相关文献

参考文献20

  • 1李双全,张宇,孙广明,吕宁.消除椒盐噪声的改进滤波算法[J].计算机工程,2008,34(10):171-172. 被引量:18
  • 2Tomasi C, Manduchi R. Bilateral Filtering for Gray and Color Images ~ C ]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA : IEEE Press, 1998 : 839-846. 被引量:1
  • 3Buades A, Coll B, Morel J M. A Review of Image Denoising Algorithms, with a New One [ J ]. Multiscale Modeling and Simulation,2005,4(2) :490-530. 被引量:1
  • 4Zhang Lei, Dong Weisheng, Zhang D, et al. Two-stage Image Denoising by Principal Component Analysis with Local Pixel Grouping [ J ]. Pattern Recognition, 2010, 43(4) :1531-1549. 被引量:1
  • 5Aharom M, Elad M, Bruckstrein A M. The K-SVD: An Algorithm for Designing of Over-complete Dictionaries for Sparse Representation [ J ]. IEEE Transactions on Signal Processing ,2006,54 ( 11 ) :4311-4322. 被引量:1
  • 6Lin C H,Tsai J S, Chiu C T. Switching Bilateral Filter with a Texture/Noise Detector for Universal Noise Removal I J 1. IEEE Transactions on Image Processing, 2010,19 (9) :2307-2320. 被引量:1
  • 7Xiong Bo,Yin Zhouping. A Universal Denoising Frameworkwith a New Impulse Detector and Nonlocal Means I J]. IEEE Transactions on Image Processing, 2012, 21 ( 4 ) : 1663- 1675. 被引量:1
  • 8Schulte S, Nachtegael M, de Witte V, et al. A Fuzzy Impulse Noise Detection and Reduction Method ~ J]. IEEE Transactions on Image Processing, 2006,15 ( 5 ) : 1153-1162. 被引量:1
  • 9Cai Jianfeng,Chan R, Nikolova M. Two-phase Methods for Deblurring Images Corrupted by Impulse Plus Gaussian Noise [ J 1. Inverse Problems and Imaging, 2008,2 ( 2 ) : 187 -204. 被引量:1
  • 10Yu Xiao,Zeng T Y, Yu J, et al. Restoration of Images Corrupted by Mixed Gaussian-impulse Noise via 11-10 MinimizationE J 1 - Pattern Recognition, 2010, 44 ( 8 ) : 1708-1720. 被引量:1

二级参考文献23

  • 1宋宇,李满天,孙立宁.基于相似度函数的图像椒盐噪声自适应滤除算法[J].自动化学报,2007,33(5):474-479. 被引量:42
  • 2王明佳,张旭光,韩广良,王延杰.自适应权值滤波消除图像椒盐噪声的方法[J].光学精密工程,2007,15(5):779-783. 被引量:23
  • 3Brownrigg D.The Weighted Median Filter[J].Communication of Association for Computing Machinery,1984,27(8):807-818. 被引量:1
  • 4Ko S J,Lee S J.Center Weighted Median Filters and Their Applications to Image Enchancement[J].IEEE Trans.on Circuits Syst.,1991,38(9):984-993. 被引量:1
  • 5Sun T,Neuvo Y.Detail-preserving Median Based Filters in Image Processing[J].Pattern Recognition,1994,15(4):341-347. 被引量:1
  • 6Wang Zhou,Zhang D.Progressive Swishing Median Filter for the Removal of Impulse Noise from Highly Corrupted Images[J].IEEE Trans.on Circuits and Systems:Analog and Digital Signal Processing,1999,46(1):78-80. 被引量:1
  • 7Toprak A,Guler I.Suppression of Impulse Noise in Medical Images with the Use of Fuzzy Adaptive Median Filter[J].Journal of Medical Systems,2006,30(6):465-471. 被引量:1
  • 8ELAD M. Sparse and redundant representations: from theory to appli- cations in signal and image processing [ M ]. Berlin: Springer, 2010:56-60. 被引量:1
  • 9MICHAEL ELAI), MICHAL AHARON. Image denoising via sparse and redundant representations over learned dictionaries [J ]. IEEE Transac- tion on Image Processing, 201)6, 15(12): 3736-3745. 被引量:1
  • 10YANG S, ZHAO L, WANG M, ZHAO Y, JIAO L. Dictionary learn- ing and similarity regularization based image noise re- duction [C]. Journal of Visual Communication and Image Representation, 2012, 24(2): 181-186. 被引量:1

共引文献21

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部