期刊文献+

基于TRNSYS的岩土热响应测试及影响因素分析 被引量:4

Soil thermal response test and analysis of influence factors based on TRNSYS
下载PDF
导出
摘要 针对实际工程中影响热响应测试的诸多因素,建立了基于地埋管储热模型的瞬时模型,模拟分析了加热功率、钻孔直径、水箱容积及回填材料对岩土热物性参数测试结果的影响。通过对同一口测试井两次不同功率、测试时长的实测,验证了该模型的准确性。研究结果表明:在设定不同的加热功率下,岩土导热系数和钻孔内传热热阻的测试结果分别相差4.94%和0.32%,而每延米换热量测试结果相差24.99%,同时验证了50 h为热响应测试的最小时长;热响应测试仪的水箱容积对导热系数的影响较小,仅影响了加热流体达到稳定状态的时间;当钻孔直径为110,130,150 mm时,随着回填材料导热系数的增大,岩土导热系数的变化率逐渐减小,整体增幅均在0.09 W/(m·K)内,表明回填材料对热响应测试影响较小。 In view of many factors influencing the thermal response test in actual engineering, establishes the instantaneous model based on the duct ground heat storage model. Simulates and analyses the influences of heating power, borehole diameter, water tank volume and backfill material on the test result of .the soil thermo-physical property. The model is verified by two practical thermal response tests for the same borehole under two different heating powers and durations. The results show that the thermal conductivity and borehole thermal resistance of these two tests are difference of 4. 94% and 0.32% respectively, but the radius heat flux per borehole unit length deviation is 24.99%. And it is also verified that the duration for thermal response test is at least 50 h. The effect of the water tank volume on the thermal conductivity can be ignored, and it just affects the time of circulating water to achieve the stability. When the diameter of borehole is 110, 130,150 mm respectively, the change rate of thermal conductivity is diminishing with the increase of the thermal conductivity of backfill materials, and the overall growth is within 0.09 W/(m · K),which indicates that the backfill materials have a small effect on thermal response test.
出处 《暖通空调》 北大核心 2016年第9期135-140,共6页 Heating Ventilating & Air Conditioning
基金 上海工程技术大学内涵建设项目(编号:B8932-13-0102)
关键词 热响应测试 TRNSYS 加热功率 水箱容积 钻孔直径 回填材料 测试时长 thermal response test, TRNSYS, heating power, water tank volume, borehole diameter,backfill material, test duration
  • 相关文献

参考文献9

  • 1中国建筑科学研究院.地源热泵系统工程技术规范:GB50366--2005[S].2009年版.北京:中国建筑工业出版社,2009. 被引量:1
  • 2FLORIDES G, KALOGIROU S. Ground heat exchangers--a review of systems: models and applications[J]. Renewable Energy, 2007, 32 (15) : 2461-2478. 被引量:1
  • 3YANG Y, CUI P, FANG Z. Vertical-borebole ground-coupled heat pumps: a review of models and systems[J]. Applied Energy, 2010, 87(1) :16-27. 被引量:1
  • 4RAYMOND J, THERRIEN R, GOSSELIN L, et al. A review of thermal response test analysis using pumping test concepts[J]. Ground Water, 2011, 49 (6): 932-945. 被引量:1
  • 5FLORIDES G, KALOGIROU S. First in situ determination of the thermal performance of a U-pipe borehole heat exchanger in Cyprus E J~. Applied Thermal Engineering, 2008, 28(2/3) : 157-163. 被引量:1
  • 6SIGNHILD E A, GEHLIN G H. Comparison of four model for thermal response test evaluation [ G~ // ASHRAE Trans, 2003, 109(1) : 131-142. 被引量:1
  • 7于明志,方肇洪,等.现场测量深层岩土热物性方法[J].工程热物理学报,2002,23(3):354-356. 被引量:58
  • 8胡平放,雷飞,孙启明,胡磊,孟庆丰,於仲义,马友才.岩土热物性测试影响因素的研究[J].暖通空调,2009,39(3):123-127. 被引量:31
  • 9HELI,STROM G. Duct ground heat storage model, manual for computer eodeED]. Sweden.. University of Lund, 1989. 被引量:1

二级参考文献16

  • 1王书中,由世俊,张光平.热响应测试在土壤热交换器设计中的应用[J].太阳能学报,2007,28(4):405-410. 被引量:53
  • 2Mogensen P. Fluid to duct wall heat transfer in duct system heat storages [C]// Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice. Stockholm, 1983:652- 657 被引量:1
  • 3Carslaw H S , Jaeger J C. Conduction of heat in solids[M]. second ed. Oxford: Oxford University Press, 1959:510 被引量:1
  • 4Roth P, Grorgiev A, Busso A, et al. First in situ determination of ground and borehole thermal properties in Latin America[J]. Renewable Energy, 2004,29(12) : 1947-1963 被引量:1
  • 5Georgios F, Soteris K. First in situ determination of the thermal performance of a U-pipe borehole heat exchanger in Cyprus[J]. Applied Thermal Engineering, 2008, 28 (2/3): 157-163 被引量:1
  • 6Signhild E A, Gehlin G H. Comparison of four model for thermal response test evaluation [G]//ASHRAE Trans, 2003,109(1): 131-142 被引量:1
  • 7Austin W A, Cenk Y, Jeffrey D S. Development of an in-situ system and analysis procedure for measuring ground thermal properties[G]//ASHRAE Trans, 2000,106 ( 1 ) : 365 - 379 被引量:1
  • 8[1]Sulatisky M T, G van der Kamp. Ground-Source Heat Pumps in the Canadian Prairies. ASHRAE Transactions,1991, 97(1): 374-385 被引量:1
  • 9[2]Cane R L D, Forgas D A. Modeling of Ground-Source Heat Pump Performance. ASHRAE Transactions, 1991,97(1): 909-925 被引量:1
  • 10[3]Bose, J E. Soil and Rock Classification for the Design of Ground-Coupled Heat Pump Systems-Field Manual, Epri CU-6600. Oklahoma: International Ground Source Heat Pump Association, 1989. 29-33 被引量:1

共引文献81

同被引文献43

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部