期刊文献+

基于基因表达式编程的番茄叶片CO2交换率建模与预测 被引量:1

Modeling and prediction of tomato leaf CO_2 exchange rate based on gene expression programming
下载PDF
导出
摘要 针对现有作物生长建模方法存在的不足,引入基因表达式编程算法,开展番茄叶片CO_2交换速率与主要环境因子关系的建模和预测研究。采用基因表达式编程算法建立番茄叶片CO_2交换速率模型,并将该模型与经典的回归模型及神经网络模型进行预测性能比较。经过3组数据的实验和对比,结果显示,基因表达式编程模型具有最高的预测精度和最佳的预测时效性,同时该算法的复杂度与神经网络相当。研究表明,基因表达式编程算法是一种性能良好的作物建模工具,可作为现有方法的补充。 In order to overcome the shortcomings of existing methods in crop growth modeling,gene expression programming( GEP) was introduced and adopted in modeling and prediction of tomato leaf CO_2 exchange rate response to major environmental factors. A new model was established by GEP in this paper,then the performance of the proposed model was compared with two classical modeling methods-regression and neural network. The experimental results on three sets of data showed that,the GEP based model get the highest predictive accuracy and the best predictive time effect,at the same time,the complexity of the GEP based model was numerically similar to neural network.The study indicated that GEP is a good tool in crop modeling,and will be an important supplement for the existing methods.
出处 《浙江农业学报》 CSCD 北大核心 2016年第9期1616-1623,共8页 Acta Agriculturae Zhejiangensis
基金 安徽省自然科学基金(1508085MF110) 安徽省科技攻关项目(1501031102) 农业部国际科技合作项目(948计划,2015-Z44)
关键词 作物生长模型 基因表达式编程 CO2交换率 环境因子 crop growth model gene expression programming carbon dioxide exchange rate environmental factors
  • 相关文献

参考文献20

  • 1P A P A G E 0R G 10L E 1,M A R K 1N 0S A T ,G E M O T S T . AFuzzy cognitive m a p based approach for predicting yield incotton crop production as a basis for decision support system inprecision agriculture application [J]. Applied Soft Computing,2011,11(4) : 3643 -3657. 被引量:1
  • 2杨靖民,杨靖一,姜旭,张忠庆.作物模型研究进展[J].吉林农业大学学报,2012,34(5):553-561. 被引量:23
  • 3王丽艳,郭树国.基于BP神经网络的番茄干重预测研究[J].浙江农业学报,2012,24(5):922-925. 被引量:6
  • 4F E R R E I R A C . G e n e expression programming: A n e w adaptivealgorithm for solving problems [J]. Complex Systems, 2001,13(2) : 87 - 129. 被引量:1
  • 5S A M A D 1A N F A R D S ,D E L 1R U A S A N N 1A R ,KISI 0, et al.Comparative analysis of ozone level prediction models usinggene expression programming and multiple linear regression[J]. Geofizika,2013,30(1):43 -74. 被引量:1
  • 6元昌安,彭昱忠,覃晓,石亚冰,蔡宏果..基因表达式编程算法原理与应用[M].北京:科学出版社,2010:355.
  • 7李茵..基于基因表达式编程的粮食产量预测研究[D].西北农林科技大学,2010:
  • 8丁维龙,胡辰,程志君,徐利锋.基于基因表达式编程的植物形态建模智能化方法[J].农业工程学报,2013,29(1):134-141. 被引量:6
  • 9王升,陈洪松,聂云鹏,付智勇,王克林,丁亚丽.基于基因表达式编程算法的参考作物腾发量模拟计算[J].农业机械学报,2015,46(4):106-112. 被引量:20
  • 10J1A N G Z U ,W A N G C S ,Z U A N G J ,et al. Online monitoringand analysis of plant photosynthetic physiology and environmentalfactors [J] . Applied Mechanics and Materials,2013, 241 -244: 75 -80. 被引量:1

二级参考文献163

共引文献74

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部