期刊文献+

基于隐马尔可夫模型的虚拟机性能异常预测 被引量:3

Prediction of virtual machine property abnormality based on hidden Markov model
下载PDF
导出
摘要 基于隐马尔可夫模型(Hidden markov model,简称HMM)的虚拟机性能,提出了一种虚拟机性能异常的预测方法。该方法的核心思想是基于业务系统的运行时资源消耗具有一定的规律性。通过该规律性采用隐马尔可夫模型刻画当前业务系统的正确状态,并根据业务系统预测结果是否偏移正常状态来判定业务系统是否出现性能异常。基于TPC-W的试验结果显示,该方法具有快速发现和定位性能异常的能力,且其运行时开销较小。 We made an unusual discovery of virtual machine performance based on Hidden Markov Model. The core idea is that the consumption of resources has a certain regularity when the operation system runs. Hidden Markov model is adopted to correctly portray the current state of business systems, and according to the results of forecasts to determine whether the business system is abnormal or not. The test results based on TPC-W show that this method has the unusual ability to quickly find and locate properties, and the cost is much lower.
作者 鲁明 宋馥莉
出处 《河南农业大学学报》 CAS CSCD 北大核心 2016年第4期563-567,共5页 Journal of Henan Agricultural University
基金 河南省教育厅科学技术研究重点项目(14A520084) 河南省科技厅科技攻关课题(152102310325 152102310118)
关键词 虚拟机 性能异常发现 机器学习 virtual machine discovery of property abnormality robotic learning
  • 相关文献

参考文献15

二级参考文献68

  • 1冯少冲,邸彦强,朱元昌,杨文兵.IaaS云计算中虚拟机部署算法研究[J].华中科技大学学报(自然科学版),2012,40(S1):359-364. 被引量:4
  • 2Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss 被引量:1
  • 3Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf 被引量:1
  • 4Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403. 被引量:1
  • 5Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11. 被引量:1
  • 6Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28. 被引量:1
  • 7Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117. 被引量:1
  • 8Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43. 被引量:1
  • 9Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150. 被引量:1
  • 10Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350. 被引量:1

共引文献1325

同被引文献30

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部