期刊文献+

线图上的团染色问题

The clique-coloring problem in line graphs
下载PDF
导出
摘要 设G=(V,E)为简单图,G的每个至少有两个顶点的极大完全子图称为G的一个团.图的团染色定义为给图的点进行染色使得图中没有单一颜色的团,也就是说每一个团具有至少2种颜色.图的一个k-团染色是指用k种颜色给图的点着色使得图G的每一个团至少有2种颜色.图G的团染色数χC(G)是指最小的数k使得图G存在k-团染色.首先指出了完全图的线图的团染色数与推广的Ramsey数之间的一个联系,其次对于最大度不超过7的线图给出了一个最优团染色的多项式时间算法. A clique is defined as a complete subgraph maximal under inclusion and having at least two vertices. A k-clique-coloring of a graph G is an assignment of k colors to the vertices of G such that no clique of G is monochromatic. If G has a k- clique-coloring, we say that G is k-clique-colorable. The clique-coloring number xc(G) is the smallest integer k admitting a k-clique-coloring of G. In this paper, we first point out a relation between the clique-coloring number of line graphs of complete graphs and the generalized Ramsey number. Secondly, we give a polynomial time algorithm for the optimal clique-coloring problem in line graphs of maximum degree at most 7.
作者 梁作松
出处 《运筹学学报》 CSCD 北大核心 2016年第3期92-98,共7页 Operations Research Transactions
基金 国家自然科学基金(No.11601262) 山东省自然科学青年基金(No.ZR2014AQ008) 中国博士后基金(No.2016M592156)
关键词 团染色 多项式时间算法 线图 完全图 clique-coloring, polynomial-time algorithm, line graph, complete graph
  • 相关文献

参考文献19

  • 1Bollobas B. Modem Graph Theory [M]. New York: Springer-Verlag, 2001. 被引量:1
  • 2Bacso G, Gravier S,Gyarfas A, et al. Coloring the maximal cliques of graphs [J]. SIAM Journalon Discrete Mathematics, 2004, IT: 361-376. 被引量:1
  • 3Defossez D. Clique-coloring some classess of odd-hole-free graphs [J]. Journal of Graph Theory、2006, 53: 233-249. 被引量:1
  • 4Defossez D. Complexity of clique-coloring odd-hole-free graphs [J]. Journal of Graph Theory,2009, 62: 139-156. 被引量:1
  • 5Duffus D, Kierstead H A, Trotter W T. Fibers and ordered set coloring [J]. Journal of Combi-natorial Theory, Series A, 1991,58: 158-164. 被引量:1
  • 6Hoang C T, McDiarmid C. On the divisibility of graphs [J]. Discret Mathematics, 2002,242:145-156. 被引量:1
  • 7Marx D. Complexity of clique coloring and related problems [J]. Theoretical Computer Science,2011, 412: 3487-3500. 被引量:1
  • 8Jenson T, Toft B. Graph Coloring Problems [M]. New York: Wiley-Interscience, 1995. 被引量:1
  • 9Kratochvfl J, Tuza Z. On the complexity of bicoloring clique hypergraphs of graphs [J]. Journalof Algorithms^ 2002,45: 40-54. 被引量:1
  • 10Lone Z,Rival I. Chains, antichains and fibres [J]. Journal of Combinatorial Theory, Series A,1987, 44: 207-228. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部