期刊文献+

甲醇制烯烃催化剂再生动力学研究 被引量:6

Study on regeneration kinetics of catalyst in methanol to olefins plant
下载PDF
导出
摘要 反应过的甲醇制烯烃催化剂需要经过烧炭再生才能恢复活性,研究催化剂的再生动力学对控制催化剂再生过程的影响因素,恢复催化剂活性有重要意义。利用工业数据,在再生温度627~659℃,压力0.10MPa(G)的条件下下,建立了反应速率一温度动力学方程以及V(CO)/V(CO2)-温度动力学方程。将动力学研究应用到实际生产中,得到影响催化剂再生过程的主要控制因素,即再生温度和主风量。考察了再生温度和主风量对烟气中O2、CO和CO2浓度的影响,结果表明:随着再生温度的升高,CO生成速率明显增加,CO2生成速率明显减弱;随着主风量增加,再生温度有所提高,CO生成速率明显增加,CO2生成速率略微增加。为了稳定烧焦过程必须控制再生温度和主风量,动力学研究为装置生产操作提供了指导。 The used catalyst in methanol to olefins process needs to go through the coke combustion regeneration process to recover the catalytic activity. Studying regeneration kinetics of catalyst is crucial for controlling the influence factors of regeneration and recovering the catalytic activity. Using industry data, the kinetic equations of reaction rate to temperature and V(CO)/V( CO2 ) to temperature are established under the conditions of regeneration temperature of 627 to 659℃ and pressure of 0.10 MPa (G). The effects of main influence factors of regeneration, namely regeneration temperature and air flow on the concentration of O2, CO and CO2 in flue gas are investigated by applying dynamics equations in the practical production. The results show that along with the increase of regeneration temperature, the formation rate of CO is markedly increased, while that of CO2 is markedly decreased. Along with the increase of air flow, the regeneration temperature also enhances to some extent, and formation rate increases markedly for CO and slightly for CO2. In order to stabilize the coke combustion process, the regeneration temperature and air flow should be controlled, and the kinetic study provides direction for production and operation.
出处 《能源化工》 2016年第4期49-53,共5页 Energy Chemical Industry
关键词 甲醇制烯烃 催化剂再生 动力学方程 再生温度 主风量 methanol to olefins catalyst regeneration kinetic equation regeneration temperature air flow
  • 相关文献

参考文献8

  • 1AGUAYO A T, CAMPO A E S, GAYUBO A G, et al. Deactivation by coke of a catalyst based on SAPO-34 in the transformation of methanol into olefins [ J ]. J Chem Technol Biotechnol, 1999, 74 : 315- 321. 被引量:1
  • 2GRC)NVOLD A, MOLJORD K, DYPVIK T, et al. Con- version of methanol to lower alkenes on molecular sieve type catalysts [ J ]. Studies in Surface Science and Cataly- sis, 1994, 81:399-404. 被引量:1
  • 3HAW J F, MARCUS D M. Well-defined(supra) molec- ular structures in zeolite methnaol to olefin catalysis [ J ]. Topics in Catalysis, 2005, 34(1) :41-48. 被引量:1
  • 4WRAGG D S, JOHNSEN R E, BALASUNDARAM M, et al. SAPO-34 methanol-to-olefin catalysts under working conditions: A combined in situ powder X-ray diffraction, mass spectrometry and Raman study [ J ]. Journal of Catal- ysis, 2009, 268(2):290-296. 被引量:1
  • 5陈俊武主编..催化裂化工艺与工程 第2版[M].北京:中国石化出版社,2005:1371.
  • 6CHEN D, GR~NVOLD A, MOLJORD K, et al. Methanol conversion to light olefins over SAPO-34: reac- tion network and deactivation kinetics [ J ]. Ind Eng Chem Res, 2007, 46:4116-4123. 被引量:1
  • 7XIE X W, LI Y, LIU Z Q, et al. Low-temperature oxi- dation of CO catalyzed by Co3 04 nanorods [ J ]. Nature, 2009, 458 (7239) : 746-749. 被引量:1
  • 8王新平,王旭珍,王新葵,刘泽群,牛家豪.关于化学反应表观活化能和指前因子的教学讨论[J].大学化学,2011,26(3):33-37. 被引量:18

二级参考文献2

  • 1吴越.催化化学(上册)[M].北京:科学出版社,1998.340-362. 被引量:2
  • 2美国国家催化委员会.催化展望.熊国兴,陈德安译.北京:北京大学出版社,1993. 被引量:1

共引文献17

同被引文献13

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部