摘要
反应过的甲醇制烯烃催化剂需要经过烧炭再生才能恢复活性,研究催化剂的再生动力学对控制催化剂再生过程的影响因素,恢复催化剂活性有重要意义。利用工业数据,在再生温度627~659℃,压力0.10MPa(G)的条件下下,建立了反应速率一温度动力学方程以及V(CO)/V(CO2)-温度动力学方程。将动力学研究应用到实际生产中,得到影响催化剂再生过程的主要控制因素,即再生温度和主风量。考察了再生温度和主风量对烟气中O2、CO和CO2浓度的影响,结果表明:随着再生温度的升高,CO生成速率明显增加,CO2生成速率明显减弱;随着主风量增加,再生温度有所提高,CO生成速率明显增加,CO2生成速率略微增加。为了稳定烧焦过程必须控制再生温度和主风量,动力学研究为装置生产操作提供了指导。
The used catalyst in methanol to olefins process needs to go through the coke combustion regeneration process to recover the catalytic activity. Studying regeneration kinetics of catalyst is crucial for controlling the influence factors of regeneration and recovering the catalytic activity. Using industry data, the kinetic equations of reaction rate to temperature and V(CO)/V( CO2 ) to temperature are established under the conditions of regeneration temperature of 627 to 659℃ and pressure of 0.10 MPa (G). The effects of main influence factors of regeneration, namely regeneration temperature and air flow on the concentration of O2, CO and CO2 in flue gas are investigated by applying dynamics equations in the practical production. The results show that along with the increase of regeneration temperature, the formation rate of CO is markedly increased, while that of CO2 is markedly decreased. Along with the increase of air flow, the regeneration temperature also enhances to some extent, and formation rate increases markedly for CO and slightly for CO2. In order to stabilize the coke combustion process, the regeneration temperature and air flow should be controlled, and the kinetic study provides direction for production and operation.
出处
《能源化工》
2016年第4期49-53,共5页
Energy Chemical Industry
关键词
甲醇制烯烃
催化剂再生
动力学方程
再生温度
主风量
methanol to olefins
catalyst regeneration
kinetic equation
regeneration temperature
air flow