期刊文献+

气象集约化资源池计算资源容量估计方法研究 被引量:6

Research on Computing Resource Scale Estimating Method for Intensive Meteorological Resource Pool
下载PDF
导出
摘要 精确估计计算资源的规模是气象集约化资源池合理设计的关键,但是由于应用对计算资源需求可能突发增长,应用部署方案种类繁多等因素的存在,致使计算资源规模估计困难。为解决该问题,本文对计算资源容量规划问题进行建模,并在分析问题求解难度的基础上,根据问题的特点设计了一种基于离散差分进化算法的计算容量估计方法。在问题建模上,本文采用资源预留策略来保证应用能获取足够的计算资源。在方法设计上,方法首先建立了应用的部署顺序与计算资源容量规模的映射关系,并以所需参考服务器的规模和资源利用水平来综合评估应用部署顺序的适应度;然后,通过随机方式生成初始方案,并以适应度为评价标准,利用变异、交叉、局部搜索等操作改变应用的部署顺序;最后,通过迭代搜索估计计算资源所需的规模。实验结果表明该方法能有效估计计算资源容量的规模。 Estimating the scale of computing resource accurately is crucial for designing the intensive meteorological resource pool. However,it is difficult to estimate the scale,due to the growth of emergency demand for computing resource and a large number of schemes for deploying the meteorological application in different servers. In this paper,a model was built to describe the problem of estimating the scale of computing resource,and a differential evolution algorithm for estimating the computing resource scale was proposed to solve it by analyzing the difficulty of problem solving. To ensure the application of sufficient resources,reserving computing resource strategy was used in this model. To solve the problem,this algorithm firstly built a mapping relationship between application deployment order and computing resource scale,and a fitness function was proposed to evaluate the application deployment order by taking account of the number of servers and the resource utilization. Then,the initial application deployment orders were generated randomly,and they changed by mutation operation,crossover operation and local search operation according to their fitness. At last,the scale of computing resource was estimated after the iterative search. The experiment result shows that this algorithm can estimate the computing resource scale effectively.
出处 《中国电子科学研究院学报》 北大核心 2016年第4期429-436,共8页 Journal of China Academy of Electronics and Information Technology
关键词 气象集约化资源池 离散差分进化算法 容量规划 计算资源容量估计 NP完全问题 Intensive Meteorological Resource Pool Differential Evolution Capacity Planning estimating the computing resource scale NP-complete problem
  • 相关文献

参考文献12

二级参考文献86

  • 1王靖.“最大—最小”加权模糊逻辑[J].西安邮电学院学报,2006,11(1):94-96. 被引量:1
  • 2张巍.企业虚拟化实战[M].第1版.北京:机械工业出版社,2009. 被引量:1
  • 3叶伟.互联网时代的软件革命SaaS架构设计[M].第1版.北京:电子工业出版社,2008. 被引量:1
  • 4Armbrust M, Fox A, Griffith R et al. A view of cloud computing. Communications of the ACM, 2010, 53(4): 50 58. 被引量:1
  • 5Patterson D, Brown A, BroadweIl P et al. Recovery oriented computing (ROC).. Motivation, definition, techniques, and case studies. Berkeley: UC Berkeley, Technical Report: UCB/CSD-02-1175 , 2002. 被引量:1
  • 6Clark C, Fraser K, Hand Set al. Live migration of virtual machines//Proceedings of the 2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI'05). Boston, 2005: 273-286. 被引量:1
  • 7Zhu X, Young D, Watson B.J, Wang Z et al. 1000 lslands: An integrated approach to resource management forvirtualized data centers. Cluster Computing, 2008, 12(1): 45-57. 被引量:1
  • 8Li Bo, Li Jian Xin, Huai Jin-Peng et al. EnaCloud: An energy saving application live placement approach for cloud computing environments//Proceedings of the International Conference on Cloud Computing. Bangalore, 2009:17-24. 被引量:1
  • 9Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation//Proceedings of the 33rd International Computer Measurement Group Conference. San Diego, 2007:399-406. 被引量:1
  • 10Gupta R, Bose S. K, Sundarrajan Set al. A two stage heuristic algorithm for solving server consolidation problem with item-item and bin-item incompatibility constraints//Proceedings of the 2008 IEEE International Conference on Services Computing (SCC'08). Hawaii, 2008:39-46. 被引量:1

共引文献161

同被引文献31

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部