期刊文献+

基于CMOS图像传感器混合噪声的自适应滤波算法 被引量:5

Research on the Adaptive Filter Algorithm Based on the Mixed Noises of CMOS Image Sensor
下载PDF
导出
摘要 针对中值滤波导致部分图像细节损失和均值滤波出现模糊现象,设计了一种适用于椒盐和高斯混合噪声的自适应滤波算法。该算法先用最小邻域的均值和阈值判断噪声类型,然后使用加权中值滤波处理椒盐噪声,再利用拉普拉斯算子和相应阈值判断图像边缘细节,最后对高斯噪声进行加权均值滤波。实验仿真结果表明,从图像视觉效果来看,相比单独使用中值和均值滤波降噪,自适应滤波算法对图像的还原效果更好,图像细节保存较好,模糊程度相对较弱,图像更清晰。通过对比峰值信噪比(PSNR)和均方误差(MSE),对混合噪声进行处理时,滤波算法的PSNR和MSE值优于中值和均值滤波,有效还原了噪声图像。整个算法是在最小邻域空间进行,易于实现,对混合噪声的处理效果较好,为图像处理的系统集成化设计提供了技术支持。 For the median filter resulting in some loss of the image detail and the mean filter appearing the vagueness, in this paper, presented is an adaptive filter algorithm suitable for the mixture noise with the impulse and Gaussian. First of all, the algorithm uses the average value in the minimum neighborhood and the threshold to determine the type of noise. Secondly, the algorithm uses the weighted median filter to process the impulse noise, then it uses the laplace operator and corresponding threshold to analyze the edge of image. At last, the algorithm uses the weighted mean filter to process the Gaussian noise. The simulation result shows, for the visual effect of image, comparing to separate median and mean filtering noise, the proposed algorithm is better in the effect on the reduction filter. The image is better preservation of detail, and weaker in the degree of blurring weaker, and some clearer in the clarity. Comparing the peak signal to noise ratio (PSNR) and mean square error (MSE), when processing the mixed noise, the PSNR and MSE value of the proposed algorithm are better than the median and mean filter, and this algorithm effectively reduces the noise of image. The whole algorithm is processed in the smallest neighborhood space, easy to implement, and shows better treatment of the mixed noise.
出处 《半导体光电》 CAS 北大核心 2016年第4期568-572,共5页 Semiconductor Optoelectronics
关键词 降噪滤波 混合噪声 图像处理 最小邻域空间 de-noise filtering mixed noise image processing the smallest neighborhoodspace
  • 相关文献

参考文献5

二级参考文献31

  • 1杨永明,路陈红.小波包分析在一维及二维信号去噪中的应用[J].西安建筑科技大学学报(自然科学版),2004,36(3):364-367. 被引量:11
  • 2周刚,贾振红,覃锡忠.一种新的图像去噪混合滤波方法[J].激光杂志,2007,28(1):57-59. 被引量:13
  • 31,Fong Yu-Shan. Comparison study of nonlinear filters in image processing applications. Optical Engineering, 1989,28(7):749~760. 被引量:1
  • 42,Lee Yong Hoon. Generalized median filtering and related nonlinear filtering techniques. IEEE Trans. Acoust., Speech, Signal Processing, 1985,ASSP-33(3):672~683. 被引量:1
  • 53,Sebastien Guillon. Adaptive Nonlinear Filters for 2D and 3D Image Enhancement. Signal Processing, 1998,67(3):237~254. 被引量:1
  • 64,Xu You. A robust adaptive estimator for filtering noise in images. IEEE Trans. Image Processing, 1995,4(5):693~699. 被引量:1
  • 75,Amlam Kundu. Combination median filter. IEEE Trans. Image Processing, 1992,1(3):422~429. 被引量:1
  • 86,Hwang H. Adaptive median filters:New algorithms and results. IEEE Trans. Image Processing, 1995,4(4):499~502. 被引量:1
  • 97,Reinhard Bernstein. Adaptive nonlinear filters for simultaneous removal of different kinds of noise in images. IEEE Trans. Circuits Syst., 1987, CAS-34(11):1275~1291. 被引量:1
  • 108,Kundu A. Application of two-dimensional generalized mean filtering removal of impulse noises from images. IEEE Trans. Acoust., Speech, Signal Processing., 1984, ASSP-32(3):600~609. 被引量:1

共引文献70

同被引文献46

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部