期刊文献+

Remote Navigation of Turtle by Controlling Instinct Behavior via Human Brain-computer Interface 被引量:6

Remote Navigation of Turtle by Controlling Instinct Behavior via Human Brain-computer Interface
原文传递
导出
摘要 Brain-Computer Interface (BCI) techniques have advanced to a level where it is now eliminating the need lor hand-based activation. This paper presents a novel attempt to remotely control an animal's behavior by human BCI using a hybrid of Event Related Desynchronization (ERD) and Steady-State Visually Evoked Potential (SSVEP) BCI protocols. The turtle was chosen as the target animal, and we developed a head-mounted display, wireless communication, and a specially designed stimulation device for the turtle. These devices could evoke the turtle's instinctive escape behavior to guide its moving path, and turtles were remotely controlled in both indoor and outdoor environments. The system architecture and design were presented. To demon- strate the feasibility of the system, experimental tests were performed under various conditions. Our system could act as a framework for future human-animal interaction systems. Brain-Computer Interface (BCI) techniques have advanced to a level where it is now eliminating the need lor hand-based activation. This paper presents a novel attempt to remotely control an animal's behavior by human BCI using a hybrid of Event Related Desynchronization (ERD) and Steady-State Visually Evoked Potential (SSVEP) BCI protocols. The turtle was chosen as the target animal, and we developed a head-mounted display, wireless communication, and a specially designed stimulation device for the turtle. These devices could evoke the turtle's instinctive escape behavior to guide its moving path, and turtles were remotely controlled in both indoor and outdoor environments. The system architecture and design were presented. To demon- strate the feasibility of the system, experimental tests were performed under various conditions. Our system could act as a framework for future human-animal interaction systems.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第3期491-503,共13页 仿生工程学报(英文版)
关键词 brain-computer interface turtle (Trachemys scripta elegans) remote navigation instinct behaviour escape be- havior brain-computer interface, turtle (Trachemys scripta elegans), remote navigation, instinct behaviour, escape be- havior
  • 相关文献

参考文献2

二级参考文献19

共引文献9

同被引文献46

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部